Some tips on 14221-01-3

14221-01-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,14221-01-3 ,Tetrakis(triphenylphosphine)palladium, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to catalyst-palladium compound, name is Tetrakis(triphenylphosphine)palladium, and cas is 14221-01-3, its synthesis route is as follows.

General procedure: Into a 20 mL brown Schlenk tube were placed Pd(PPh3)4(0.05 mmol, 0.0578 g), PdCl2(MeCN)2 (0.05 mmol, 0.0130 g), norbornene(2.1 mmol, 0.2 g), and K2CO3 (2.0 mmol, 0.277 g). Then, 4-iodotoluene (2.0 mmol, 0.26 mL) as well as 8 mL DMA (containing 0.5 M H2O) were transferred to the tube by syringe under N2. The mixturewas stirred at 70 C for 20 h. The solutionwas washed withH2O and ether. The organic layer was extracted twice with ether. It was then purified by Centrifugal Thin Layer Chromatography (CTLC)using CH2Cl2 as eluent. The solvent was removed under reduced pressure. The yield of 5a is 98% (0.0848 g, 0.0980 mmol). The residue was subjected to crystallization process by CH2Cl2 and hexanesand yellow crystals were resulted. Similar processes were taken forthe preparation of 5b except that dicyclopentadiene (2.0 mmol,0.264 g) was used. The yield of 5b is 98% (0.0922 g, 0.0980 mmol). Yellow crystals were resulted in crystallization process by CH2Cl2and heptane.

14221-01-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,14221-01-3 ,Tetrakis(triphenylphosphine)palladium, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Chen, Ya-Qian; Hong, Fung-E.; Tetrahedron; vol. 71; 38; (2015); p. 7016 – 7025;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Analyzing the synthesis route of 52522-40-4

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris(dibenzylideneacetone)dipalladium-chloroform, 52522-40-4

52522-40-4, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Tris(dibenzylideneacetone)dipalladium-chloroform, cas is 52522-40-4,the catalyst-palladium compound, it is a common compound, a new synthetic route is introduced below.

General procedure: 0.1127g (0.4871mmol) of Me-TtBQ, 0.1755g (1.218mmol) of dmfu and 0.2101g (0.2030mmol) of [Pd2(DBA)3¡¤CHCl3] were dissolved under inert atmosphere (Ar) in 30ml of anhydrous acetone. The mixture was stirred for 60min and eventually treated with active charcoal for 5/10min and filtered on Celite filter. The resulting yellow solution was dried under vacuum and the residual treated with diethyl ether, filtered off, washed with diethyl ether in excess and dried under vacuum. 0.1452g (yield 75%) of the title compound was obtained as pale yellow microcrystals.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris(dibenzylideneacetone)dipalladium-chloroform, 52522-40-4

Reference£º
Article; Canovese, Luciano; Visentin, Fabiano; Biz, Chiara; Scattolin, Thomas; Santo, Claudio; Bertolasi, Valerio; Polyhedron; vol. 102; (2015); p. 94 – 102;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

The important role of Tris(dibenzylideneacetone)dipalladium-chloroform

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris(dibenzylideneacetone)dipalladium-chloroform, 52522-40-4

52522-40-4, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Tris(dibenzylideneacetone)dipalladium-chloroform, cas is 52522-40-4,the catalyst-palladium compound, it is a common compound, a new synthetic route is introduced below.

A mixture of 38 mg (0.37 mmol) Pd2(dba)3CHCl3, 100 mg (0.74mmol) of [Mo3S4Cl3(dbbpy)3]Cl and 56 mg (0.74 mmol) of thioureain 20 ml of dichloromethane was refluxed for 5 hours. An excess ofhexane was layered onto the resulting brown solution to givegreenish-brown crystals of 2. Yield: 80 mg (71percent). Anal. Calcd forC55H76N8Cl4Mo3S5Pd: C 42.7, H 5.0, N 7.2, S 10.4. Found: C 42.8,H 5.1, N 7.0, S 10.4. 1H NMR (500.13 MHz, CDCl3): delta = 9.74 (d, J =6.11 Hz, 3H), 9.03 (d, J = 5.95 Hz, 3H), 8.49 (d, J = 1.22 Hz, 3H);8.39 (d, J = 1.22 Hz, 3H); 7.58 (p, J = 4.65, J = 1.75 Hz, 6H), 6.37 (s,4H), 1.46 (s, 27H) 1.41 (s, 27H) ppm. IR (KBr, cm1): 3397 (w,sh), 3156 (m), 3127 (m), 2962 (vs), 2907 (s), 2870 (s), 1615 (vs),1545 (m), 1481 (m), 1464 (m), 1410 (s), 1367 (m), 1310 (w),1294 (w), 1255 (m), 1203 (w), 1157 (w), 1127 (w), 1079 (w),1024 (m), 901 (m), 883 (w), 852 (w), 836 (m), 744 (w), 719 (w),605 (w), 551 (w), 485 (w), 427 (w). ESI-MS (+; CH2Cl2/CH3CN):m/z = 1611 [Mo3S4(Pdtu)Cl3(dbbpy)]+, 1436 [Mo3S4(Pd)Cl3(dbbpy)]+,1327 [Mo3S4Cl3(dbbpy)]+.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tris(dibenzylideneacetone)dipalladium-chloroform, 52522-40-4

Reference£º
Article; Laricheva, Yuliya A.; Gushchin, Artem L.; Abramov, Pavel A.; Sokolov, Maxim N.; Polyhedron; vol. 154; (2018); p. 202 – 208;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Analyzing the synthesis route of 52522-40-4

52522-40-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,52522-40-4 ,Tris(dibenzylideneacetone)dipalladium-chloroform, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to catalyst-palladium compound, name is Tris(dibenzylideneacetone)dipalladium-chloroform, and cas is 52522-40-4, its synthesis route is as follows.

To 64.3 mg (0.278 mmol) of TTbQ-Me dissolved in anhydrous acetone (20 ml) in a two necked flask, 30 mg (0.278 mmol) of p-benzoquinone and 120 mg (0.116 mmol) of Pd2DBA3CHCl3 were added in sequence under inert atmosphere (Ar). The resulting mixture was stirred in the dark for 30 min, filtered on a celite filter and evaporated under vacuum to a small volume. Addition of Et2O induces the precipitation of the complex which was filtered off and dried in a desiccator for 5 h. 82.2 mg of the title compound as a red solid were obtained (yield 80percent). 1H NMR (CDCl3, T 298 K, ppm) d: 1.37 (s, 9H, tBu), 2.99 (s, 3H,CH3 quinoline), 5.62 (broad AB system, 4H, CH]CH), 7.51 (d, 1H,J 8.4 Hz, H3), 7.58 (dd, 1H, J 8.1, 7.3 Hz, H6), 7.93 (dd, 1H, J 8.1,1.3 Hz, H5), 8.02 (dd, 1H, J 7.3, 1.3 Hz, H7), 8.22 (d, 1H, J 8.4 Hz,H4).13C{1H} NMR (CDCl3, T 298 K, ppm) d: 29.6 (CH3, CH3 quinoline),30.9 (CH3, CMe3), 54.6 (C, CMe3), 100.5 (bs, CH, CH]CH), 123.8 (CH, C3), 125.9 (CH, C6), 128.0 (C, C10), 130.3 (C, C8), 130.6 (CH, C5),138.3 (CH, C4), 138.8 (CH, C7), 149.4 (C, C9), 165.0 (C, C2), 186.9 (C,CO), 188.4 (C, CO).1H NMR (CD2Cl2, T 193 K, ppm) d: 1.26 (s, 9H, tBu), 2.87 (s, 3H,CH3 quinoline), 4.71 (d, 1H, J 5.8 Hz, CH]CH), 4.92 (d, 1H, J 5.8 Hz,CH]CH), 6.10 (d, 1H, J 9.8 Hz, CH]CH), 6.22 (d, 1H, J 9.8 Hz,CH]CH), 7.51 (d, 1H, J 8.4 Hz, H3), 7.58 (dd, 1H, J 8.1, 7.3 Hz, H6),7.96 (dd, 1H, J 8.1, 1.3 Hz, H5), 8.01 (dd, 1H, J 7.3, 1.3 Hz, H7), 8.26(d, 1H, J 8.4 Hz, H4).13C{1H} NMR (CD2Cl2, T 193 K, ppm) d: 29.0 (CH3, eCH3 quinoline),30.3 (CH3, CMe3), 54.9 (C, CMe3), 63.5 (s, CH, CH]CH), 67.6 (s,CH, CH]CH), 124.2 (CH, C3), 126.2 (CH, C6), 127.9 (C, C10), 128.9 (C,C8), 131.1 (CH, C5), 134.5 (s, CH, CH]CH), 135.3 (s, CH, CH]CH),138.8 (CH, C4), 139.2 (CH, C7), 149.2 (C, C9), 165.0 (C, C2), 186.6 (C,CO), 188.3 (C, CO). IR (KBr pellets): -CN 1575, nCO 1613; 1636 cm1. Anal calc. for C20H21NO2PdS: C, 53.88; H, 4.75; N, 3.14. Found C,53.71; H, 4.79; N, 3.01percent.

52522-40-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,52522-40-4 ,Tris(dibenzylideneacetone)dipalladium-chloroform, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Canovese, Luciano; Visentin, Fabiano; Santo, Claudio; Bertolasi, Valerio; Journal of Organometallic Chemistry; vol. 749; (2014); p. 379 – 386;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Share a compound : 52522-40-4

52522-40-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,52522-40-4 ,Tris(dibenzylideneacetone)dipalladium-chloroform, other downstream synthetic routes, hurry up and to see

Name is Tris(dibenzylideneacetone)dipalladium-chloroform, as a common heterocyclic compound, it belongs to catalyst-palladium compound, and cas is 52522-40-4, its synthesis route is as follows.

General procedure: To 64.3 mg (0.278 mmol) of TTbQ-Me dissolved in anhydrous acetone (20 ml) in a two necked flask, 30 mg (0.278 mmol) of p-benzoquinone and 120 mg (0.116 mmol) of Pd2DBA3CHCl3 were added in sequence under inert atmosphere (Ar). The resulting mixture was stirred in the dark for 30 min, filtered on a celite filter and evaporated under vacuum to a small volume. Addition of Et2O induces the precipitation of the complex which was filtered off and dried in a desiccator for 5 h. 82.2 mg of the title compound as a red solid were obtained (yield 80percent).

52522-40-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,52522-40-4 ,Tris(dibenzylideneacetone)dipalladium-chloroform, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Canovese, Luciano; Visentin, Fabiano; Santo, Claudio; Bertolasi, Valerio; Journal of Organometallic Chemistry; vol. 749; (2014); p. 379 – 386;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Downstream synthetic route of Tris(dibenzylideneacetone)dipalladium-chloroform

52522-40-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,52522-40-4 ,Tris(dibenzylideneacetone)dipalladium-chloroform, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to catalyst-palladium compound, name is Tris(dibenzylideneacetone)dipalladium-chloroform, and cas is 52522-40-4, its synthesis route is as follows.

Stage 2: Stage 1 material (8.50 g) and 3,5-bis(4-tert-butylphenyl)phenyl-1-boronic acid pinacol ester (15.50 g) were dissolved in toluene (230 mL). The solution was purged with nitrogen for 1 h before 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (66 mg) and tris(dibenzylidene)dipalladium (75 mg) were added using 10 mL of nitrogen-purged toluene. A 20wtpercent solution of tetraethylammonium hydroxide in water (60 mL) was added in one portion and the mixture as stirred for 20 h with the heating bath set to 105 ¡ãC. T.L.C. analysis indicated all the stage material had been consumed and only one fluorescent spot was observed. The reaction mixture was cooled and filtered into a separating funnel. The layers were separated and the aqueous layer extracted with toluene. The organic extracts were washed with water, dried with magnesium sulphate, filtered and concentrated to yield the crude product as a yellow/orange solid. Pure compound was obtained by column chromatography eluting with a gradient of ethyl acetate in hexanes followed by precipitation from DCM/methanol. HPLC indicated a purity of 99.75percent and a yield of 80percent (11.32g). 1H NMR (referenced to CDCl3): 7.83 (3H, d), 7.76 (6H, s), 7.73 (3H, s) 7.63 (12H, d) 7.49 (12H, d), 7.21 (3H, dd), 6.88 (3H, d), 4.28 (9H, s), 2.25 (3H, m), 1.98 (3H, m), 1.4-1.5 (57H, m), 1.23 (3H, m), 0.74 (9H, t)

52522-40-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,52522-40-4 ,Tris(dibenzylideneacetone)dipalladium-chloroform, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Cambridge Display Technology Limited; Sumitomo Chemical Co., Ltd; Kamtekar, Kiran; Steudel, Annette; EP2738195; (2014); A1;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Extracurricular laboratory: Synthetic route of 14221-01-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tetrakis(triphenylphosphine)palladium, 14221-01-3

14221-01-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Tetrakis(triphenylphosphine)palladium, cas is 14221-01-3,the catalyst-palladium compound, it is a common compound, a new synthetic route is introduced below.

Into a 20 mL brown Schlenk tube were placed Pd(PPh3)4(0.05 mmol, 0.0578 g), PdCl2(MeCN)2 (0.05 mmol, 0.0130 g), norbornene(2.1 mmol, 0.2 g), and K2CO3 (2.0 mmol, 0.277 g). Then, 4-iodotoluene (2.0 mmol, 0.26 mL) as well as 8 mL DMA (containing 0.5 M H2O) were transferred to the tube by syringe under N2. The mixturewas stirred at 70 C for 20 h. The solutionwas washed withH2O and ether. The organic layer was extracted twice with ether. It was then purified by Centrifugal Thin Layer Chromatography (CTLC)using CH2Cl2 as eluent. The solvent was removed under reduced pressure. The yield of 5a is 98% (0.0848 g, 0.0980 mmol). The residue was subjected to crystallization process by CH2Cl2 and hexanesand yellow crystals were resulted. Similar processes were taken forthe preparation of 5b except that dicyclopentadiene (2.0 mmol,0.264 g) was used. The yield of 5b is 98% (0.0922 g, 0.0980 mmol). Yellow crystals were resulted in crystallization process by CH2Cl2and heptane.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Tetrakis(triphenylphosphine)palladium, 14221-01-3

Reference£º
Article; Chen, Ya-Qian; Hong, Fung-E.; Tetrahedron; vol. 71; 38; (2015); p. 7016 – 7025;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Some scientific research about 52522-40-4

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,Tris(dibenzylideneacetone)dipalladium-chloroform,52522-40-4,its application will become more common.

A common heterocyclic compound, 52522-40-4,Tris(dibenzylideneacetone)dipalladium-chloroform, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 52522-40-4

A mixture of 55 mg (0.53 mmol) Pd2(dba)3CHCl3 and 200 mg(0.11 mmol) of [Mo3S4Cl3(dnbpy)3]PF6 in 20 ml of dichloromethanewas refluxed for 1 day. An excess of hexane was layeredonto the resulting brown solution to give brown crystals of 3.Yield: 113 mg (57percent). Anal. Calcd for C84H132N6Cl4Mo3S4Pd: C53.4, H 7.0, N 4.5, S 6.8. Found: C 53.6, H 7.1, N 4.4, S 6.9. 1HNMR (500.13 MHz, CDCl3): delta = 9.78 (d, J = 5.75 Hz, 3H), 9.35 (d, J= 5.62 Hz, 3H), 7.99 (s, 3H); 7.93 (s, 3H); 7.25 (d, J = 5.50, 6H),2.76 (t, J = 6.75 Hz, 6H), 2.71 (t, J = 7.7 Hz, 6H), 1.68 (p, J12 = 7.95,J23 = 7.82 Hz, 6H), 1.39 (p, J12 = 7.7, J23 = 7.1 Hz, 6H), 1.29 (s, 72H),0.89 (s, 18H) ppm. IR (KBr, cm1): 3376 (w, sh), 3223 (w), 3123(w), 2923 (s), 2852 (s), 1648 (w), 1614 (vs), 1554 (m), 1486 (m),1462 (m), 1415 (s), 1376 (w), 1338 (w), 1314 (w), 1260 (m),1188 (w), 1096 (s), 1021 (m), 913 (w), 873 (m), 802 (m),766 (w), 721 (w), 698 (w), 615 (w), 474 (w), 421 (w). ESI-MS(+; CH2Cl2/CH3CN): m/z = 1893 {H[Mo3S4(PdCl)Cl3(dnbpy)]}+,1855 [Mo3S4(Pd)Cl3(dnbpy)]+, 1348 [Mo3S4Cl3(dnbpy)]+.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,Tris(dibenzylideneacetone)dipalladium-chloroform,52522-40-4,its application will become more common.

Reference£º
Article; Laricheva, Yuliya A.; Gushchin, Artem L.; Abramov, Pavel A.; Sokolov, Maxim N.; Polyhedron; vol. 154; (2018); p. 202 – 208;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Some scientific research about Tris(dibenzylideneacetone)dipalladium-chloroform

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,Tris(dibenzylideneacetone)dipalladium-chloroform,52522-40-4,its application will become more common.

52522-40-4 A common heterocyclic compound, 52522-40-4,Tris(dibenzylideneacetone)dipalladium-chloroform, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

The catalyst was prepared according to the reported procedure in the literature [36], which briefly will explain here. A solution containing Pd2(dba)3.CHCl3 (0.149g, 0.15mmol) and Pt(Ph2Ppy)2Cl2 (0.237g, 0.30mmol) in 50mL of dichloromethane was heated in reflux condition for 2h under nitrogen atmosphere. Then the solution was cooled to room temperature, and diethyl ether was added slowly to precipitate a greenish brown solid. The precipitate was collected by filtration and dried by vacuum. Yield 0.085g, 73percent. C34H28Cl2N2P2PdPt (MW=898.95): calcd. C 45.43, H 3.14, N, 3.12. Found: C 45.21, H 3.13, N 3.48. 1H NMR in CDCl3: delta 9.61?9.50 (m, 2H), 7.75?7.32 (m, 24H), 6.78?6.67 (m, 2H). 31P NMR in CDCl3: delta?7.6 (d, 3JPaPb=14Hz, 1JPtP=4047Hz, 1P, Pa bonded to the Pt), 32.4 (d, 3JPaPb=14Hz, 1JPtP=111Hz, 1P, Pb bonded to the Pd) ppm.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,Tris(dibenzylideneacetone)dipalladium-chloroform,52522-40-4,its application will become more common.

Reference£º
Article; Gholinejad, Mohammad; Shahsavari, Hamid R.; Razeghi, Mehran; Niazi, Maryam; Hamed, Fatemeh; Journal of Organometallic Chemistry; vol. 796; (2015); p. 3 – 10;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

A new synthetic route of Tetrakis(triphenylphosphine)palladium

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14221-01-3,Tetrakis(triphenylphosphine)palladium,its application will become more common.

A common heterocyclic compound, 14221-01-3,Tetrakis(triphenylphosphine)palladium, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 14221-01-3

General procedure: Into a 20 mL brown Schlenk tube were placed Pd(PPh3)4(0.05 mmol, 0.0578 g), PdCl2(MeCN)2 (0.05 mmol, 0.0130 g), norbornene(2.1 mmol, 0.2 g), and K2CO3 (2.0 mmol, 0.277 g). Then, 4-iodotoluene (2.0 mmol, 0.26 mL) as well as 8 mL DMA (containing 0.5 M H2O) were transferred to the tube by syringe under N2. The mixturewas stirred at 70 C for 20 h. The solutionwas washed withH2O and ether. The organic layer was extracted twice with ether. It was then purified by Centrifugal Thin Layer Chromatography (CTLC)using CH2Cl2 as eluent. The solvent was removed under reduced pressure. The yield of 5a is 98% (0.0848 g, 0.0980 mmol). The residue was subjected to crystallization process by CH2Cl2 and hexanesand yellow crystals were resulted. Similar processes were taken forthe preparation of 5b except that dicyclopentadiene (2.0 mmol,0.264 g) was used. The yield of 5b is 98% (0.0922 g, 0.0980 mmol). Yellow crystals were resulted in crystallization process by CH2Cl2and heptane.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14221-01-3,Tetrakis(triphenylphosphine)palladium,its application will become more common.

Reference£º
Article; Chen, Ya-Qian; Hong, Fung-E.; Tetrahedron; vol. 71; 38; (2015); p. 7016 – 7025;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method