Simple exploration of 78-50-2

Here is just a brief introduction to this compound(78-50-2)COA of Formula: C24H51OP, more information about the compound(Tri-n-octylphosphine Oxide) is in the article, you can click the link below.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: Tri-n-octylphosphine Oxide, is researched, Molecular C24H51OP, CAS is 78-50-2, about Copper Nanocrystal Morphology That Determines the Viability of Molecular Surface Functionalization in Tuning Electrocatalytic Behavior in CO2 Reduction, the main research direction is copper nanocrystal morphol surface functionalization tuning; electrocatalysis carbon dioxide reduction.COA of Formula: C24H51OP.

Mol. surface functionalization of metallic catalysts is emerging as an ever-developing approach to tuning their catalytic performance. Here, the authors report the synthesis of hybrid catalysts comprising Cu nanocrystals (CuNCs) and an imidazolium ligand for the electrochem. CO2 reduction reaction (CO2RR). This organic modifier steers the selectivity of cubic CuNCs toward liquid products. A comparison between cubic and spherical CuNCs reveals the impact of surface reconstruction on the viability of surface functionalization schemes. Indeed, the intrinsic instability of spherical CuNCs leads to ejection of the functionalized surface atoms. Finally, also the more stable hybrid nanocrystal catalysts, which include cubic CuNCs, can be transferred into gas-flow CO2RR cells for testing under more industrially relevant conditions.

Here is just a brief introduction to this compound(78-50-2)COA of Formula: C24H51OP, more information about the compound(Tri-n-octylphosphine Oxide) is in the article, you can click the link below.

Reference:
Chapter 1 An introduction to palladium catalysis,
Palladium/carbon catalyst regeneration and mechanical application method