Continuously updated synthesis method about (2,2¡ä-Bipyridine)dichloropalladium(II)

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. 14871-92-2, We look forward to the emergence of more reaction modes in the future.

In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), as follows.14871-92-2

[Pd(bpy)Cl2] (0.10 g, 0.30 mmol) was suspended in water (4 mL). Lactic acid (0.03 g, 0.28 mmol) and 1 M NaOH (0.60 mL) were dissolved in water (10 mL) and then added to the mixture, which was heated under reflux at 150 C with continuous stirring until a clear yellow solution was obtained. The solution was filtered and acetone (10 mL) was added to the solution. The reaction mixture was cooled to 4 C for a long time (2 months), resulting yellow crystals of complex 5. Yield: 33%. m.p.: 250 C. Elemental Anal. Calc. for C13H13ClN2OPd (355.10): C, 44.0; H, 3.7; N, 7.9. Found: C, 44.1; H, 3.6; N, 7.8%. IR (KBr, numax/cm-1): 1634 s, nu(CO); 1621 s, nu(CC); 1496 m, 1443 s, nu(CC,CN). Far-IR (Nujol, numax/cm-1): 333 m, nu(Pd-Cl); 285 m, nu(Pd-C); 243 m, nu(Pd-N). 1H NMR (CDCl3, delta/ppm): 2.40 (s, 3H, c), 3.01 (s, 2H, a), 7.61 (m, 2H, 5,5?), 8.02 (m, 4H, 3,3? and 4,4?), 9.31, 9.51 (2d, 2H, 6,6?).

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. 14871-92-2, We look forward to the emergence of more reaction modes in the future.

Reference£º
Article; Balboa, Susana; Carballo, Rosa; Castineiras, Alfonso; Gonzalez-Perez, Josefa Maria; Niclos-Gutierrez, Juan; Polyhedron; vol. 50; 1; (2013); p. 512 – 523;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Extended knowledge of (2,2¡ä-Bipyridine)dichloropalladium(II)

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2,2¡ä-Bipyridine)dichloropalladium(II).

14871-92-2,Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials.14871-92-2,A new synthetic method of this compound is introduced below.

Direct synthesis from 1a, CF3SO3Ag, and [Pd(bipy)Cl2]. A solution of Pd(bipy)Cl2 (0.10 g, 0.30 mmol) in 5 mL of CH3CN and a solution of CF3SO3Ag (0.15 g, 0.58 mmol) in 5 mL of CH3CN were mixed and heated under reflux for a day. Precipitates were filtered off and the solvent was evaporated. The resultant pale yellow powder was dissolved in a mixture of CH3CN and CHCl3, and then 1a (0.35 g, 0.58 mmol) was added. The mixture was heated under reflux for a day, and then, filtered and the solvents were removed under reduced pressure. Resultant material was recrystallized from CH3CN- CHCl3 mixture twice. White fibers (0.27 g, 46.0%) were obtained. Mp. 249-252 C (dec.). 1H NMR ( CDCl3/CD3CN = 4/1, v/v, 300 MHz): delta 10.41 (brs, 8H, OH), 9.35 (brs, 4H, Py-H), 8.33 (d, J = 7.5 Hz, 2H, bipy-H), 8.26 (t, J = 7.0 Hz, 2H, bipy-H), 7.92 (brs, 4H, Py-H), 7.51 (t, 2H, bipy-H), 7.26 (d, J = 4.4 Hz, 2H, bipy- H), 6.99 (s, 4H, ArH), 6.95 (s, 4H, ArH), 6.89 (s, 4H, ArH), 6.67 (s, 4H, ArH), 4.11 (d, J = 13.8 Hz, 2H. CH2), 4.02 (d, J = 13.6 Hz, 4H. CH2), 3.80 (brs, 4H, CH2), 3.66 (brd, J = 10.8 Hz, 4H, CH2), 3.47 (brd, J = 13.8 Hz, 4H. CH2), 3.43 (brd, J = 12.9 Hz, 2H. CH2), 3.32 (d, J = 12.9 Hz, 4H, CH2), 2.19, 2.17 (s, 24H, CH3). 13C NMR ( CDCl3/CD3CN = 4/1, v/v, 75.6 MHz): delta 157.0, 153.2, 151.7, 150.7, 149.7, 147.2, 142.3, 131.2, 131.1, 130.0, 129.6, 129.5, 128.2, 128.0, 127.8, 127.8, 127.7, 124.2, 123.0, 121.0, 118.8, 57.7, 56.7, 32.0, 31.5, 20.5, 20.3. FABMS: m/z: 1611.5 ( M+); HRMS (FAB): calcd for C89H88F3N6O11S106Pd ( M2+ + TflO-), 1611.5219. Found: 1611.5231.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2,2¡ä-Bipyridine)dichloropalladium(II).

Reference£º
Article; Takemura, Hiroyuki; Mogami, Yukako; Okayama, Kanae; Nagashima, Noriko; Orioka, Kana; Hayano, Yuri; Kobayashi, Asako; Iwanaga, Tetsuo; Sako, Katsuya; Journal of Inclusion Phenomena and Macrocyclic Chemistry; vol. 95; 3-4; (2019); p. 235 – 246;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Sources of common compounds: Tris(dibenzylideneacetone)dipalladium-chloroform

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 52522-40-4, other downstream synthetic routes, hurry up and to see.

52522-40-4, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.52522-40-4,Tris(dibenzylideneacetone)dipalladium-chloroform, it is a common compound, a new synthetic route is introduced below.

52522-40-4, A mixture of 38 mg (0.37 mmol) Pd2(dba)3CHCl3, 100 mg (0.74mmol) of [Mo3S4Cl3(dbbpy)3]Cl and 56 mg (0.74 mmol) of thioureain 20 ml of dichloromethane was refluxed for 5 hours. An excess ofhexane was layered onto the resulting brown solution to givegreenish-brown crystals of 2. Yield: 80 mg (71percent). Anal. Calcd forC55H76N8Cl4Mo3S5Pd: C 42.7, H 5.0, N 7.2, S 10.4. Found: C 42.8,H 5.1, N 7.0, S 10.4. 1H NMR (500.13 MHz, CDCl3): delta = 9.74 (d, J =6.11 Hz, 3H), 9.03 (d, J = 5.95 Hz, 3H), 8.49 (d, J = 1.22 Hz, 3H);8.39 (d, J = 1.22 Hz, 3H); 7.58 (p, J = 4.65, J = 1.75 Hz, 6H), 6.37 (s,4H), 1.46 (s, 27H) 1.41 (s, 27H) ppm. IR (KBr, cm1): 3397 (w,sh), 3156 (m), 3127 (m), 2962 (vs), 2907 (s), 2870 (s), 1615 (vs),1545 (m), 1481 (m), 1464 (m), 1410 (s), 1367 (m), 1310 (w),1294 (w), 1255 (m), 1203 (w), 1157 (w), 1127 (w), 1079 (w),1024 (m), 901 (m), 883 (w), 852 (w), 836 (m), 744 (w), 719 (w),605 (w), 551 (w), 485 (w), 427 (w). ESI-MS (+; CH2Cl2/CH3CN):m/z = 1611 [Mo3S4(Pdtu)Cl3(dbbpy)]+, 1436 [Mo3S4(Pd)Cl3(dbbpy)]+,1327 [Mo3S4Cl3(dbbpy)]+.

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 52522-40-4, other downstream synthetic routes, hurry up and to see.

Reference£º
Article; Laricheva, Yuliya A.; Gushchin, Artem L.; Abramov, Pavel A.; Sokolov, Maxim N.; Polyhedron; vol. 154; (2018); p. 202 – 208;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Discovery of 52522-40-4

According to the analysis of related databases, Tris(dibenzylideneacetone)dipalladium-chloroform, the application of this compound in the production field has become more and more popular.

In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 52522-40-4,Tris(dibenzylideneacetone)dipalladium-chloroform, as follows.52522-40-4

tetrakis(triphenylphosphine)palladium(0) [generated in situ from tris(diphenylmethylideneacetone)dipalladium chloroform adduct (16 mg, 0.016 mmol) and triphenylphosphine 312 mg, 0.12 mmol)] ; tetrakis(triphenylphosphine)palladium (0) [generated in situ from tris(dibenzylideneacetone)dipalladium chloroform adduct (27 mg, 0.025 mmol) and triphenylphosphine (52 mg, 0.20 mmol)]

According to the analysis of related databases, Tris(dibenzylideneacetone)dipalladium-chloroform, the application of this compound in the production field has become more and more popular.

Reference£º
Patent; Universitetet i Olso; US2007/203159; (2007); A1;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Continuously updated synthesis method about 14871-92-2

According to the analysis of related databases, 14871-92-2, the application of this compound in the production field has become more and more popular.

In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), as follows.14871-92-2

Solid [Pd(bpy)Cl2] (0.085 g, 0.25 mmol) was added to Hdahmp(0.04 g, 0.25 mmol) in ethanol (10 mL). Et3N (0.02 cm3, 0.20 mmol)was then added and the reaction mixture was refluxed for 48 h. Abrown precipitate was obtained which was filtered off, washedwith methanol and air-dried. Yield: 81%. Anal. Calc. for C14H13ClN6-OPdS: C, 36.9; Cl, 7.8; H, 2.9; N, 18.5; S, 7.0; Pd, 23.4. Found: C,37.1; Cl, 7.8; H, 2.8; N, 18.6; S, 7.2; Pd, 23.3%. Conductivity data(103 M in DMF): KM = 88.0 ohm1 cm2 mol1.

According to the analysis of related databases, 14871-92-2, the application of this compound in the production field has become more and more popular.

Reference£º
Article; El-Morsy, Fatema A.; Jean-Claude, Bertrand J.; Butler, Ian S.; El-Sayed, Shadia A.; Mostafa, Sahar I.; Inorganica Chimica Acta; vol. 423; PB; (2014); p. 144 – 155;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

The origin of a common compound about Tris(dibenzylideneacetone)dipalladium-chloroform

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,52522-40-4,Tris(dibenzylideneacetone)dipalladium-chloroform,its application will become more common.

A common heterocyclic compound, 52522-40-4,Tris(dibenzylideneacetone)dipalladium-chloroform, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 52522-40-4

52522-40-4, General procedure: To 64.3 mg (0.278 mmol) of TTbQ-Me dissolved in anhydrous acetone (20 ml) in a two necked flask, 30 mg (0.278 mmol) of p-benzoquinone and 120 mg (0.116 mmol) of Pd2DBA3CHCl3 were added in sequence under inert atmosphere (Ar). The resulting mixture was stirred in the dark for 30 min, filtered on a celite filter and evaporated under vacuum to a small volume. Addition of Et2O induces the precipitation of the complex which was filtered off and dried in a desiccator for 5 h. 82.2 mg of the title compound as a red solid were obtained (yield 80percent).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,52522-40-4,Tris(dibenzylideneacetone)dipalladium-chloroform,its application will become more common.

Reference£º
Article; Canovese, Luciano; Visentin, Fabiano; Santo, Claudio; Bertolasi, Valerio; Journal of Organometallic Chemistry; vol. 749; (2014); p. 379 – 386;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Continuously updated synthesis method about (2,2¡ä-Bipyridine)dichloropalladium(II)

At the same time, in my other blogs, there are other synthetic methods of this type of compound, (2,2¡ä-Bipyridine)dichloropalladium(II), and friends who are interested can also refer to it.

In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), as follows.14871-92-2

Synthesis of [Pd{OC(O)CH2N(COPh)}(bipy)] 2 A mixture of [PdCl2(bipy)] (210 mg, 0.63 mmol) with hippuric acid (113 mg, 0.63 mmol) and silver(I) oxide (600 mg) in dichloromethane (30 mL) was refluxed for 3.5 h. Methanol (30 mL) was added, and the mixture filtered to give a clear yellow solution. The solid residue was extracted with an additional 40 mL of dichloromethane-methanol (1:1 v/v), and the filtrates combined. The solution was evaporated to dryness, redissolved in dichloromethane (40 mL) and the product precipitated by addition of petroleum spirits (40 mL). The solid was filtered, washed with petroleum spirits (10 mL) and dried under vacuum to give 2 as an orange solid (192 mg, 69%). Found: C 50.2; H 3.45; N 9.1. C18H15N3O3Pd requires C 50.5; H 3.5; N 9.8%. (0043) 1H NMR, delta 9.12-6.91 (m, bipy and Ph), 4.26 (s, CH2). ESI MS (added NaHCO2, capillary exit voltage 140 V): [M+Na]+ m/z 461.88 (100%), calculated for C19H15N3O3PdNa m/z 462.00.

At the same time, in my other blogs, there are other synthetic methods of this type of compound, (2,2¡ä-Bipyridine)dichloropalladium(II), and friends who are interested can also refer to it.

Reference£º
Article; Sim, Sophie A.; Saunders, Graham C.; Lane, Joseph R.; Henderson, William; Inorganica Chimica Acta; vol. 450; (2016); p. 285 – 292;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Discovery of Tris(dibenzylideneacetone)dipalladium-chloroform

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. Tris(dibenzylideneacetone)dipalladium-chloroform, We look forward to the emergence of more reaction modes in the future.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 52522-40-4,Tris(dibenzylideneacetone)dipalladium-chloroform, This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.52522-40-4

General procedure: To 64.3 mg (0.278 mmol) of TTbQ-Me dissolved in anhydrous acetone (20 ml) in a two necked flask, 30 mg (0.278 mmol) of p-benzoquinone and 120 mg (0.116 mmol) of Pd2DBA3CHCl3 were added in sequence under inert atmosphere (Ar). The resulting mixture was stirred in the dark for 30 min, filtered on a celite filter and evaporated under vacuum to a small volume. Addition of Et2O induces the precipitation of the complex which was filtered off and dried in a desiccator for 5 h. 82.2 mg of the title compound as a red solid were obtained (yield 80percent).

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. Tris(dibenzylideneacetone)dipalladium-chloroform, We look forward to the emergence of more reaction modes in the future.

Reference£º
Article; Canovese, Luciano; Visentin, Fabiano; Santo, Claudio; Bertolasi, Valerio; Journal of Organometallic Chemistry; vol. 749; (2014); p. 379 – 386;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Some scientific research about 72287-26-4

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 72287-26-4 reaction routes.

72287-26-4 A common heterocyclic compound, 72287-26-4,[1,1′-Bis(diphenylphosphino)ferrocene]dichloropalladium(II), its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

To a solution of Example 246A (48 mg, 0.11 mmol) and Example 246B (25 mg, 0.11 mmol) in EtOH (1 mL) and toluene (1 mL) under an argon atmosphere were added 2M Na2CO3 (0.165 mL, 0.33 mmol) followed by Pd(PPh3)4 (13 mg, 0.011 mmol)). The resulting suspension was stirred under argon at 85¡ã C. for 2 hours. The reaction was cooled to ambient temperature, concentrated and purified by preparative HPLC to give the title compound (8.8 mg). HPLC Rt=2.203 min. m/z=446.08.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 72287-26-4 reaction routes.

Reference£º
Patent; Fink, Brian E.; Gavai, Ashvinikumar V.; Vite, Gregory D.; Han, Wen-Ching; Misra, Raj N.; Xiao, Hai-Yun; Norris, Derek J.; Tokarski, John S.; US2005/250753; (2005); A1;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

New downstream synthetic route of (2,2¡ä-Bipyridine)dichloropalladium(II)

The chemical industry reduces the impact on the environment during synthesis, 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),I believe this compound will play a more active role in future production and life.

14871-92-2,A common heterocyclic compound, 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Solid [Pd(bpy)Cl2] (0.166 g, 0.5 mmol) was added to dl-H2pa (0.064 g, 0.5 mmol) in ethanol (8 mL) containing triethyl amine (0.05 g, 0.5 mmol). The mixture was stirred for 72 h. The yellow-beige precipitate was filtered off, washed with ethanol and air-dried. Yield: 45%. Anal. Calcd. for C16ClH22N3O4Pd: C, 41.6; H, 4.8; N, 9.1; Cl, 7.7; Pd, 23.0%, Found: C, 41.5; H, 4.4; N, 9.0; Cl, 7.6; Pd, 23.1%. Conductivity data (10-3 M in DMF):LambdaM = 97.0 ohm-1. IR (cm-1): nu(NH) 3106; nuas(COO-) 1659; nus(COO-) 1411; nu(Pd-O) 521; nu(Pd-N) 471 cm-1. Raman: nuas(COO-) 1598; nus(COO-) 1402; delta(NH) 1560; nu(Pd-O) 529; nu(Pd-N) 450 cm-1; 1H NMR (d6-DMSO/TMS, ppm), 3.73 (d, H, Halpha); 2.50 (m, 2H, Hbeta); 2.07 (m, 2H, Hgamma); 1.30 (m, 2H, Hdelta); 3.45, 3.10 (m, 2H, Hepsilon); 13.19 (s, H, NH), ESI-MS: m/z, 816.7 {Pd(Hpa)(bpy)]2Cl}+, 780.7 {[Pd(bpy)(Hpa)]2}+, 390.0 [Pd(bpy)(Hpa)]+, 263.0 [Pd(bpy)]+.

The chemical industry reduces the impact on the environment during synthesis, 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),I believe this compound will play a more active role in future production and life.

Reference£º
Article; Alie El-Deen, Afaf A.; El-Askalany, Abd El-Monem E.; Halaoui, Ruba; Jean-Claude, Bertrand J.; Butler, Ian S.; Mostafa, Sahar I.; Journal of Molecular Structure; vol. 1036; (2013); p. 161 – 167;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method