Some tips on 29841-69-8

29841-69-8, 29841-69-8 (1S,2S)-(-)-1,2-Diphenylethylenediamine 6931238, acatalyst-ligand compound, is more and more widely used in various fields.

29841-69-8, (1S,2S)-(-)-1,2-Diphenylethylenediamine is a catalyst-ligand compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of (S,S)-diphenylethylenediamine (250 mg, 1.2 mmol) and triethylamine (0.5 ml) in THF is added dropwise a solution of dansyl chloride (318 mg, 1.2 mmol) in THF (2 ml) at 0 C. After stirring 16 h at RT the solvent is removed in vacuum and the residue is resolved in methylenchloride (20 ml). The organic solution is washed with NaHCO3 solution (5 ml), dried over Na2SO4 and after filtration the solvent is removed. Flash chromatographie afford (S,S)-5-dimethylamino-naphthalene-1-sulfonic acid (2-amino-1,2-diphenyl-ethyl)-amide as yellow oil which crystallizes by drying in vacuum. M: 445.59. 1H-NMR (400 MHz, CDCl3):8.36 (t, J=7.5 Hz, 2 H), 8.17 (dd, J=7.2, 1.2 Hz, 1 H), 7.47 (dd, J=8.8 Hz, 1 H), 7.34 (dd, J=8.5 Hz, 1 H), 7.24-7.16 (m, 4 H), 7.11 (d, J=7.5 Hz, 1 H), 6.99-6.74 (m, 6 H), 4.61 (d, J=8.5 Hz, 1 H), 4.20 (d, J=8.5 Hz, 1 H), 2.80 (s, 6 H).

29841-69-8, 29841-69-8 (1S,2S)-(-)-1,2-Diphenylethylenediamine 6931238, acatalyst-ligand compound, is more and more widely used in various fields.

Reference£º
Patent; Bilbe, Graeme; Cryan, John F.; Gentsch, Conrad; McAllister, Kevin Hall; Schmutz, Markus; Vassout, Annick; US2006/194791; (2006); A1;,
Metal catalyst and ligand design
Ligand Template Strategies for Catalyst Encapsulation – NCBI

Brief introduction of 33454-82-9

33454-82-9, As the paragraph descriping shows that 33454-82-9 is playing an increasingly important role.

33454-82-9, Lithium trifluoromethanesulfonate is a catalyst-ligand compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

The 2.21 g (10 mmol) 1-methylpyrrolidinium-l-butanesulfonate obtained in the example 2 was put in methanol, added with a solution obtained by dissolving lithium triflate 1.56 g (10 mmol) in methanol and then stirred for 12 hours. After that, the mixture solution was filtered and washed with methanol for several times and then dried, thereby providing triflate lithium 1-methylpyrrolidinium-1-butanesulfonate with 96% yields which was white solids of zwitterions.

33454-82-9, As the paragraph descriping shows that 33454-82-9 is playing an increasingly important role.

Reference£º
Patent; Korea Institute of Science and Technology; WO2006/104305; (2006); A1;,
Metal catalyst and ligand design
Ligand Template Strategies for Catalyst Encapsulation – NCBI

Analyzing the synthesis route of 130-95-0

130-95-0, 130-95-0 Quinine 3034034, acatalyst-ligand compound, is more and more widely used in various fields.

130-95-0, Quinine is a catalyst-ligand compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

QN (quinine) 3.24 g (10 mmol) and sodium hydride 0.80 g (200 mmol, respectively) were weighed.2 times equivalent) was added to a three-neck reaction flask. In addition, the air is replaced by argon gas.After replacement, 30 mL of anhydrous tetrahydrofuran (anhydrous) was added under ice bath and argon protection.DMF), after stirring for 1 hour, slowly add dropwise.Add 1.5 mL of benzyl chloride (13 mmol; 1.3 equivalents) and stir while stirring.After the addition is complete, remove the ice bath. After reacting at room temperature for 6 hours, after the reaction is completed,Quenched with saturated ammonium chloride, extracted with ethyl acetate and extracted three times.The upper organic layer was collected, washed twice with water, and once with saturated brine.Dry over anhydrous sodium sulfate, filter, concentrate,Drying gave 3.93 g of a milky white solid 2a in a yield of 95%.

130-95-0, 130-95-0 Quinine 3034034, acatalyst-ligand compound, is more and more widely used in various fields.

Reference£º
Patent; Xinxiang Medical University; Wang Yakun; Zhang Tao; Zhang Jixia; Liu Yufei; Li Guowei; Li Nan; (14 pag.)CN108947998; (2018); A;,
Metal catalyst and ligand design
Ligand Template Strategies for Catalyst Encapsulation – NCBI

Brief introduction of 153-94-6

The synthetic route of 153-94-6 has been constantly updated, and we look forward to future research findings.

153-94-6, H-D-Trp-OH is a catalyst-ligand compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

In a three-necked flask equipped with a mechanical stirrer,Add anhydrous methanol 600 mL,D-tryptophan (102.1 g, 500 mmol), Room temperature stirring, using ice salt bath,The temperature of the reaction system was reduced to 0 C,A solution of thionyl chloride (71.4 g, 600 mmol)After the dropwise addition, the temperature was raised to room temperature for about 12 hours.Thin layer chromatography monitoring, when the raw material reaction is complete,Stop the reaction.After atmospheric distillation of most of the remaining thionyl chloride and methanol,Decompression in addition to thionyl chloride and methanol, cooling,To give the hydrochloride of solid tryptophan methyl ester (Isolated from air) can be used directly in the next step., 153-94-6

The synthetic route of 153-94-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Xi hua University; Yang, Weiqing; Li, Hongyang; Wang, Huizhen; (18 pag.)CN106432237; (2017); A;,
Metal catalyst and ligand design
Ligand Template Strategies for Catalyst Encapsulation – NCBI

Downstream synthetic route of 5350-41-4

5350-41-4 N,N,N-Trimethyl-1-phenylmethanaminium bromide 21449, acatalyst-ligand compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5350-41-4,N,N,N-Trimethyl-1-phenylmethanaminium bromide,as a common compound, the synthetic route is as follows.

5350-41-4, General procedure: The desired amount of substrate, boronic acid (3 equiv), base (3equiv), Pd(OAc)2 (2.5 molpercent) and ligand (5 molpercent) were weighed out as solids, the vial was sealed and purged with argon, then solvent was added and the vial was purged again. The reactions were run for 14 h at the specified temperature. The crude material was filtered through a pad of Celite and washed three times with CHCl3. The solvent was removed under reduced pressure, an internal standard was added and the reaction was analysed by 1H NMR spectroscopy. For purification, the analysed mixture was concentrated, the product extracted with Et2O and filtered through anhydrous MgSO4 and further purified by flash column chromatography.

5350-41-4 N,N,N-Trimethyl-1-phenylmethanaminium bromide 21449, acatalyst-ligand compound, is more and more widely used in various fields.

Reference£º
Article; Tuertscher, Paul L.; Davis, Holly J.; Phipps, Robert J.; Synthesis; vol. 50; 4; (2018); p. 793 – 803;,
Metal catalyst and ligand design
Ligand Template Strategies for Catalyst Encapsulation – NCBI

Downstream synthetic route of 170161-27-0

170161-27-0, The synthetic route of 170161-27-0 has been constantly updated, and we look forward to future research findings.

170161-27-0, Tri-tert-butyl 1,4,8,11-tetraazacyclotetradecane-1,4,8-tricarboxylate is a catalyst-ligand compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: The y-carbaldehyde intermediates (29.0 muL, 500 mumol) were added to a solution of tri-tert-butyl 1,4,8,11-tetraazacyclotetradecane-1,4,8-tricarboxylate (35.7 mg, 71.0 mumol) in MeOH (1.0 mL) and AcOH (100 L) under N2 and stirred for 2 h at room temperature. NaBH3CN (8.90 mg, 142 mumol) was added slowly to the reaction mixture and stirred at room temperature for 24 h. The reaction mixture was poured into saturated NaHCO3, extracted with EtOAc and dried with MgSO4. The organic layer was then washed with water and brine, dried with MgSO4 and concentrated under reduced pressure to obtain the corresponding tri-N-Boc-protected amine intermediates (68.9 mg), which were used in the next step without purification. The intermediates were then dissolved in CHCl3 (2.50 mL) and treated with 95% aqueous TFA (2.50 mL) at 0 C for 6 h. The mixture was concentrated under reduced pressure and purified by preparative HPLC to obtain the desired compounds 6-12.

170161-27-0, The synthetic route of 170161-27-0 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Sakyiamah, Maxwell M.; Kobayakawa, Takuya; Fujino, Masayuki; Konno, Makoto; Narumi, Tetsuo; Tanaka, Tomohiro; Nomura, Wataru; Yamamoto, Naoki; Murakami, Tsutomu; Tamamura, Hirokazu; Bioorganic and Medicinal Chemistry; vol. 27; 6; (2019); p. 1130 – 1138;,
Metal catalyst and ligand design
Ligand Template Strategies for Catalyst Encapsulation – NCBI

Analyzing the synthesis route of 1120-02-1

1120-02-1, The synthetic route of 1120-02-1 has been constantly updated, and we look forward to future research findings.

1120-02-1, OctMAB is a catalyst-ligand compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: In a typical synthesis of DA-La(PW11)2, an aqueous solution of (2.0 g, 0.31 mmol) K-La(PW11)2 was dropped into a chloroform solution of (1.1 g, 3.75 mmol) DA-Br. A white precipitate formed after the addition of the whole K-La(PW11)2 aqueous solution and then the product was separated after a further 1 h of stirring. The product was washed twice with H2O and dried in air [9]. DDA-La(PW11)2, TDA-La(PW11)2, HDA-La(PW11)2 and ODA-La(PW11)2 were prepared with a similar procedure. In the 1H NMR spectra, the singlet peak at 2.5 ppm and 3.3 ppm is assigned to be DMSO-d6, and the water in DMSO-d6, respectively.

1120-02-1, The synthetic route of 1120-02-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Zhao, Shen; Jia, Yueqing; Song, Yu-Fei; Applied Catalysis A: General; vol. 453; (2013); p. 188 – 194;,
Metal catalyst and ligand design
Ligand Template Strategies for Catalyst Encapsulation – NCBI

Brief introduction of 112881-51-3

The synthetic route of 112881-51-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.112881-51-3,4′-(4-Pyridyl)-2,2′:6′,2”-terpyridine,as a common compound, the synthetic route is as follows.

Cd(NO3)2¡¤4H2O (123mg, 0.4mmol),4?-(4-pyridyl)-2.2?:6?,2??-terpyridine (31 mg, 0.1 mmol) were added to a mixture ofH2O (5 mL) and DMF (1 mL). The slurry was then transferred into a 23 mL Teflonlinedautoclave and heated at 110 C for 48 h. The solution was allowed to cool at arate of 5 C/h to room temperature. Neddle-shaped crystals were collected throughfiltration, washed with H2O (3 ¡Á 20mL) and EtOH(3 ¡Á 20 mL), dried at roomtemperaturein a vacuum(47 mg, 85% yield based on PYTPY). IR (KBr): nu=3455 (vw),3060 (w), 2800 (vw), 1600 (vs), 1450 (vs), 1378 (vs), 1291 (vs), 1166 (m), 1080(w), 1007 (m), 894 (w), 835 (w), 789 (m), 723 (w), 650 (m), 583 (vw), 498(w) cm-1. C21H17CdN5O6 (M = 547.80): calcd. C 45.90%, H3.120%, N 12.75%;found: C 45.76%, H3.143%, N 12.96%., 112881-51-3

The synthetic route of 112881-51-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Yuan, Lijun; Fu, Zhiyong; Inorganic Chemistry Communications; vol. 69; (2016); p. 66 – 69;,
Metal catalyst and ligand design
Ligand Template Strategies for Catalyst Encapsulation – NCBI

Little discovery in the laboratory: a new route for 14871-92-2

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 14871-92-2.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. (2,2¡ä-Bipyridine)dichloropalladium(II),14871-92-2, This compound has unique chemical properties. The synthetic route is as follows.,14871-92-2

General procedure: To a vigorously stirred solution of BzpheH2 (32.32 mg, 0.12 mmol) in 8 mL CH3OH/H2O (V:V 1:1), [Pd(bipy)Cl2] (20 mg, 0.06 mmol) was added. The mixture was heated to 50C and adjusted to pH 8-9 by NaOH solution, and then stirred for 2 h. The solution was concentrated to about 80% of the original volume. The complex I-a was separated from the solution after a few days., 14871-92-2

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 14871-92-2.

Reference£º
Article; Wang, Li-Wei; Liu, Si-Yuan; Wang, Jin-Jie; Peng, Wen; Li, Sheng-Hui; Zhou, Guo-Qiang; Qin, Xin-Ying; Wang, Shu-Xiang; Zhang, Jin-Chao; Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry; vol. 45; 7; (2015); p. 1049 – 1056;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

The effect of the change of (2,2¡ä-Bipyridine)dichloropalladium(II) synthetic route on the product

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. 14871-92-2, We look forward to the emergence of more reaction modes in the future.

In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), as follows.14871-92-2

General procedure: Palladium(II) chloride (PdCl2), 2,2?-bipyridine (bipy), 1,10-phenanthroline (phen), thiourea (TU, 1), N-methylthiourea (meTU, 2), N-buthylthiourea (buTU, 3), N,N?-diethylthiourea (dietTU, 4) and N,N?-dibuthylthiourea (dibuTU, 5) were purchased as pure reagents at AG, from Sigma Aldrich. Potassium tetrachloropalladate(II) was prepared by the reaction of palladium chloride with a slight excess of potassium chloride. The complexes [Pd(bipy)Cl2] and [Pd(phen)Cl2], were obtained by adding 1 mmol of the respective ligand to 0.326 g (1 mmol) of K2[PdCl4] suspended/dissolved in 40 mL of wet methanol under reflux for about 1 h. The precipitated crystalline powders were recovered by filtration and dried under vacuum for 2 h. 0.25 mmol of these complexes (83 and 89 mg, respectively) were then suspended again in a water/methanol mixture, whereupon 0.5 mmol of the respective thiourea (1-5) was added under reflux. After 1 h, clear yellow to orange solutions were obtained. These solutions were filtrated and the filtrates were kept for 3-5 days at room temperature for crystallization. As a result yellow-red crystals were obtained. The experimental yield of the products, based on Pd, was more than 50%. All the solvents, of analytical grade, were dried and deoxygenated before being used. Elemental analyses were performed at the Microanalytical Laboratory of Redox snc (Milano). Characterization details are extensively quoted in the supplementary material.

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. 14871-92-2, We look forward to the emergence of more reaction modes in the future.

Reference£º
Article; Rotondo, Archimede; Barresi, Salvatore; Cusumano, Matteo; Rotondo, Enrico; Polyhedron; vol. 45; 1; (2012); p. 23 – 29;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method