Downstream synthetic route of 14871-92-2

The synthetic route of 14871-92-2 has been constantly updated, and we look forward to future research findings.

14871-92-2, (2,2¡ä-Bipyridine)dichloropalladium(II) is a catalyst-palladium compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

[(bpy)PdCl2] (0.332 g, 1 mmol) and Tl+L (0.475 g, 1 mmol) in 10 mL of dichloromethane were stirred for 18 h at room temperature. The resulting solution was filtered and evaporated to about 1 mL in volume. Then hexane (10 mL) was added to precipitate as a red-orange solid. The solid was repeatedly washed with diethyl ether (3 ¡Á 10 mL) and dried under vacuum to give the pure complex (0.297 g, 52.31% yield, and 1 mmol). Anal. Calc. (%) for C23H16ClN5O2PdS (568.9752): C, 48.61; H, 2.84; N, 12.32; Found (%): C, 48.59; H, 2.82; N, 12.29. TOF-MS: 532.0060 [M – Cl] +. FT-IR: 2152 (m, NCN) cm-1. 1H NMR (DMSO-d6): delta 7.16-7.20 (m, 2H, H-Ar), 7.49-7.51 (m, 2H, H-Ar), 7.65 (t, 1H, H-5, 3J 7.2), 7.74 (t, 1H, H-5′, 3J 7.2), 7.91-7.99 (m, 4H, H-Ar), 8.34-8.40 (m, 4H, H-Ar), 8.76 (d, 1H, H-6, 3J 7.2), 9.09 (d, 1H, H-6′, 3J 7.2). 13C NMR (DMSO-d6): delta 114.0 (NCN), 119.9, 121.9, 124.0, 125.9, 128.9, 133.1, 137.8, 143.0, 147.0, 149.0, 150.7, 157.9.

The synthetic route of 14871-92-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Tabrizi, Leila; Zouchoune, Bachir; Zaiter, Abdallah; Inorganica Chimica Acta; vol. 499; (2020);,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

New learning discoveries about 14871-92-2

The synthetic route of 14871-92-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),as a common compound, the synthetic route is as follows.

(bpy)PdCl2 (167 mg, 0.5 mmol) and AgNO3 (170 mg, 1.0 mmol) was mixed in CH3NO2 (40 mL). The mixture was stirred at 60 C for 24 hrs, and the white AgCl precipitate was filtered by a short pad of celite. The filtrate was sampled for ESI-HRMS, and cationic C20H18N4O2Pd22+ (m/z: 279.9743) was observed. Then the filtrate was concentrated and recrystallized to give 25 mg light yellow needle-like solid. Yield 9.0%.

The synthetic route of 14871-92-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Yang, Zhenyu; Ni, Yuxin; Liu, Rui; Song, Kaixuan; Lin, Shaohui; Pan, Qinmin; Tetrahedron Letters; vol. 58; 21; (2017); p. 2034 – 2037;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Brief introduction of 14871-92-2

14871-92-2 (2,2¡ä-Bipyridine)dichloropalladium(II) 6096670, acatalyst-palladium compound, is more and more widely used in various.

14871-92-2, (2,2¡ä-Bipyridine)dichloropalladium(II) is a catalyst-palladium compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A suspension of 1 mmol (0.333 g) of [Pd(bpy)Cl2] in 150 mL ofacetone was treated with 1 mmol (0.228 g) of benzyl dithiocarbamatesodium salt and the mixture was refluxed under continuousmagnetic stirring for 2 h. Stirring continued for another 12 h at 318 K and then filtered.The resulting yellow colored filtrate containing the desired productwas concentrated to 15 mL at 318 K. The orange precipitate formedwas filtered off and washed with diethyl ether. Recrystallizationwas done by dissolving the precipitate in minimum amount ofethanol. Yield: 0.336 g (70%) and decomposes at 207-209 C. Anal.Calcd. for C18H16N3S2ClPd (480.34 g mol-1) Found, (Calcd.) (%): C45.01, (45.05); H, 3.36 (3.34); N, 8.75 (8.76). Molar conductance forthe complex (10-3 M, H2O) is 9.0 mS m2 mol-1. FT-IR (KBr, cm-1):3405 upsilon(N-H); 3020 upsilon(Caro-H); 1550 upsilon(C-N); 1313 upsilons (CNS); 1036 upsilonas(CNS); 503 upsilon (Pd-N); 450 upsilon (Pd-S). 1H NMR (DMSO-d6-D2O, delta ppm):4.71 (d, 2H, H-c), 7.40 (m,1H, H-a), 7.32 (m, 4H, H-b), 8.54 (m, 2H, H-6,60), 8.27 (m, 2H, H-3,30), 8.18 (m, 2H, H-4,40), 7.68 (M, 2H, H-5,50)(Fig. 1). 13C NMR (DMSO-d6, delta ppm): 48.00 (C-e), 139.67 (C-5,5′),139.84 (C-4,4′), 140.00 (C-a), 140.17 (C-b), 140.34 (C-c), 140.50 (C-3,30), 140.60 (C-d), 140.67 (C-1,10), 140.76 (C-f) (Fig. 1). The NMRnumbering schemes are given in Fig. 1. UV-Vis data (H2O, lambdamax/nm,(log epsilon)): 312 (3.40), 249 (3.75), 187 (3.94).

14871-92-2 (2,2¡ä-Bipyridine)dichloropalladium(II) 6096670, acatalyst-palladium compound, is more and more widely used in various.

Reference£º
Article; Saeidifar, Maryam; Mirzaei, Hamidreza; Ahmadi Nasab, Navid; Mansouri-Torshizi, Hassan; Journal of Molecular Structure; vol. 1148; (2017); p. 339 – 346;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Analyzing the synthesis route of 14871-92-2

14871-92-2 (2,2¡ä-Bipyridine)dichloropalladium(II) 6096670, acatalyst-palladium compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),as a common compound, the synthetic route is as follows.

To a yellow suspension containing 0.10 g (0.31 mmol) of [Pd(bpy)Cl2] in water (10 mL) wereadded a solution containing 0.04 g (0.32 mmol) of HaptHCl in water (10 mL) and an aqueoussolution of NaOH (0.25 M, 2.5 mL). When the mixture was stirred at 50 C for 3 h, the suspensionturned to a yellow solution. After filtration, a saturated aqueous solution of NaNO3 (5 mL) wasadded to the yellow filtrate. The mixture was stood at room temperature for 2 d, and the resultingyellow crystals of [2](NO3)2 was collected by filtration. Yield: 0.03 g (36%).

14871-92-2 (2,2¡ä-Bipyridine)dichloropalladium(II) 6096670, acatalyst-palladium compound, is more and more widely used in various.

Reference£º
Article; Kouno, Masahiro; Miyashita, Yoshitaro; Yoshinari, Nobuto; Konno, Takumi; Chemistry Letters; vol. 44; 11; (2015); p. 1512 – 1514;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

New learning discoveries about 14871-92-2

The synthetic route of 14871-92-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),as a common compound, the synthetic route is as follows.

General procedure: Palladium(II) chloride (PdCl2), 2,2?-bipyridine (bipy), 1,10-phenanthroline (phen), thiourea (TU, 1), N-methylthiourea (meTU, 2), N-buthylthiourea (buTU, 3), N,N?-diethylthiourea (dietTU, 4) and N,N?-dibuthylthiourea (dibuTU, 5) were purchased as pure reagents at AG, from Sigma Aldrich. Potassium tetrachloropalladate(II) was prepared by the reaction of palladium chloride with a slight excess of potassium chloride. The complexes [Pd(bipy)Cl2] and [Pd(phen)Cl2], were obtained by adding 1 mmol of the respective ligand to 0.326 g (1 mmol) of K2[PdCl4] suspended/dissolved in 40 mL of wet methanol under reflux for about 1 h. The precipitated crystalline powders were recovered by filtration and dried under vacuum for 2 h. 0.25 mmol of these complexes (83 and 89 mg, respectively) were then suspended again in a water/methanol mixture, whereupon 0.5 mmol of the respective thiourea (1-5) was added under reflux. After 1 h, clear yellow to orange solutions were obtained. These solutions were filtrated and the filtrates were kept for 3-5 days at room temperature for crystallization. As a result yellow-red crystals were obtained. The experimental yield of the products, based on Pd, was more than 50%. All the solvents, of analytical grade, were dried and deoxygenated before being used. Elemental analyses were performed at the Microanalytical Laboratory of Redox snc (Milano). Characterization details are extensively quoted in the supplementary material.

The synthetic route of 14871-92-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Rotondo, Archimede; Barresi, Salvatore; Cusumano, Matteo; Rotondo, Enrico; Polyhedron; vol. 45; 1; (2012); p. 23 – 29;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Downstream synthetic route of 14871-92-2

The synthetic route of 14871-92-2 has been constantly updated, and we look forward to future research findings.

14871-92-2, (2,2¡ä-Bipyridine)dichloropalladium(II) is a catalyst-palladium compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Palladium(II) chloride (PdCl2), 2,2?-bipyridine (bipy), 1,10-phenanthroline (phen), thiourea (TU, 1), N-methylthiourea (meTU, 2), N-buthylthiourea (buTU, 3), N,N?-diethylthiourea (dietTU, 4) and N,N?-dibuthylthiourea (dibuTU, 5) were purchased as pure reagents at AG, from Sigma Aldrich. Potassium tetrachloropalladate(II) was prepared by the reaction of palladium chloride with a slight excess of potassium chloride. The complexes [Pd(bipy)Cl2] and [Pd(phen)Cl2], were obtained by adding 1 mmol of the respective ligand to 0.326 g (1 mmol) of K2[PdCl4] suspended/dissolved in 40 mL of wet methanol under reflux for about 1 h. The precipitated crystalline powders were recovered by filtration and dried under vacuum for 2 h. 0.25 mmol of these complexes (83 and 89 mg, respectively) were then suspended again in a water/methanol mixture, whereupon 0.5 mmol of the respective thiourea (1-5) was added under reflux. After 1 h, clear yellow to orange solutions were obtained. These solutions were filtrated and the filtrates were kept for 3-5 days at room temperature for crystallization. As a result yellow-red crystals were obtained. The experimental yield of the products, based on Pd, was more than 50%. All the solvents, of analytical grade, were dried and deoxygenated before being used. Elemental analyses were performed at the Microanalytical Laboratory of Redox snc (Milano). Characterization details are extensively quoted in the supplementary material.

The synthetic route of 14871-92-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Rotondo, Archimede; Barresi, Salvatore; Cusumano, Matteo; Rotondo, Enrico; Polyhedron; vol. 45; 1; (2012); p. 23 – 29;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Some tips on 14871-92-2

As the paragraph descriping shows that 14871-92-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),as a common compound, the synthetic route is as follows.

General procedure: Solid [Pd(L)Cl2] (L = bpy, phen) (0.2 mmol) was added to methanolic solution H2mesc (0.039 g, 0.2 mmol) containing KOH (0.0224 g, 0.4 mmol;; 15 mL). The mixture was stirred for 24 h. The yellow precipitate was filtered off, washed with methanol and air-dried. For [Pd(bpy)(mesc)]: Anal. Calc. For C20H15N2O4.5Pd: C, 52.0; H, 3.3; N, 6.1; Pd, 23.1%, Found: C, 52.1, H, 3.2; N, 6.0; Pd, 23.0%. Conductivity data (10-3 M in DMSO): LambdaM = 2.0 Ohm-1 cm2 mol-1. IR (cm-1); nu(C=O) 1664; nu(C-C) 1486; nu(C-O) 1254; nu(Pd-O) 521; nu(Pd-N) 427. 1H NMR (d6-DMSO/TMS, ppm), delta: CH3, 3.36; H(3), 6.66; H(8), 5.90; H(5), 6.50. ESI-MS: m/z: 905 (Calcd 904.8) [Pd(bpy)(mesc)]2+, 453 (Calcd 452.4) [Pd(bpy)(mesc)]+.

As the paragraph descriping shows that 14871-92-2 is playing an increasingly important role.

Reference£º
Article; Butler, Ian S.; Gilson, Denis F.R.; Jean-Claude, Bertrand J.; Mostafa, Sahar I.; Inorganica Chimica Acta; vol. 423; PB; (2014); p. 132 – 143;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Simple exploration of 14871-92-2

As the paragraph descriping shows that 14871-92-2 is playing an increasingly important role.

14871-92-2, (2,2¡ä-Bipyridine)dichloropalladium(II) is a catalyst-palladium compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a yellow suspension containing 0.30 g (0.90 mmol) of [Pd(bpy)Cl2] in water (20 mL) wereadded a solution containing 0.06 g (0.46 mmol) of HaptHCl in water (10 mL) and an aqueoussolution of NaOH (0.3 M, 10 mL). When the mixture was stirred at 50 C for 3 h, the suspensionturned to a yellow solution. After filtration, a saturated aqueous solution of NaNO3 (10 mL) wasadded to the yellow filtrate, followed by storing in a refrigerator for 1 week. The resulting yellowcrystals of [3](NO3)2 suitable for X-ray analysis were collected by filtration. Yield: 0.19 g (55%).

As the paragraph descriping shows that 14871-92-2 is playing an increasingly important role.

Reference£º
Article; Kouno, Masahiro; Miyashita, Yoshitaro; Yoshinari, Nobuto; Konno, Takumi; Chemistry Letters; vol. 44; 11; (2015); p. 1512 – 1514;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Brief introduction of 14871-92-2

14871-92-2 (2,2¡ä-Bipyridine)dichloropalladium(II) 6096670, acatalyst-palladium compound, is more and more widely used in various.

14871-92-2, (2,2¡ä-Bipyridine)dichloropalladium(II) is a catalyst-palladium compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Silver tetrafluoroborate (AgBF4) (0.6 mmol) was dissolvedin methanol (7 mL); (2,2?-bipyridine) dichloropalladium(II)(Pd(Bpy)Cl2) (0.3 mmol) was dissolved in DMSO (1 mL),and then, the solutions were stirred together at ambient temperature0.5 h. Following gravity filtration, solid 3-hydroxyflavonederivative (0.3 mmol) and triethylamine (0.7 mL)were added to the filtrate. The reaction mixture was stirredfor 0.5 h (2 h for the Fla-OMe). The corresponding bipyridinepalladium flavonolato salt was then recovered usingvacuum filtration and recrystallized in CH3OH/CH3CN solvent;remaining solvent was removed in a vacuum desiccator overnight.

14871-92-2 (2,2¡ä-Bipyridine)dichloropalladium(II) 6096670, acatalyst-palladium compound, is more and more widely used in various.

Reference£º
Article; Han, Xiaozhen; Whitfield, Sarah; Cotten, Jacob; Transition Metal Chemistry; (2019);,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Simple exploration of 14871-92-2

As the paragraph descriping shows that 14871-92-2 is playing an increasingly important role.

14871-92-2, (2,2¡ä-Bipyridine)dichloropalladium(II) is a catalyst-palladium compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Silver tetrafluoroborate (AgBF4) (0.6 mmol) was dissolvedin methanol (7 mL); (2,2?-bipyridine) dichloropalladium(II)(Pd(Bpy)Cl2) (0.3 mmol) was dissolved in DMSO (1 mL),and then, the solutions were stirred together at ambient temperature0.5 h. Following gravity filtration, solid 3-hydroxyflavonederivative (0.3 mmol) and triethylamine (0.7 mL)were added to the filtrate. The reaction mixture was stirredfor 0.5 h (2 h for the Fla-OMe). The corresponding bipyridinepalladium flavonolato salt was then recovered usingvacuum filtration and recrystallized in CH3OH/CH3CN solvent;remaining solvent was removed in a vacuum desiccator overnight.

As the paragraph descriping shows that 14871-92-2 is playing an increasingly important role.

Reference£º
Article; Han, Xiaozhen; Whitfield, Sarah; Cotten, Jacob; Transition Metal Chemistry; (2019);,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method