New learning discoveries about 14871-92-2

With the rapid development of chemical substances, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

(2,2¡ä-Bipyridine)dichloropalladium(II), cas is 14871-92-2, it is a common heterocyclic compound, the catalyst-palladium compound, its synthesis route is as follows.

General procedure: [Pd(bpy)Cl2] (0.20 g, 0.60 mmol) was suspended in water (25 mL). Silver nitrate (0.20 g, 1.19 mmol) in water (5 mL) was added and the reaction mixture was stirred for 6 h at 60 C and then at room temperature, always in absence of light. The resulting solution was centrifuged and filtered to remove AgCl. A few drops of water, glycolic acid (0.05 g, 0.66 mmol) and 1 M NaOH (1.20 mL) were added to the filtrate. The resulting solution was stirred for 5 days and concentrated at 60 C to 5 mL on a rotary evaporator. The mixture was cooled to room temperature and the yellow powder was filtered off and dissolved from water and again concentrated to 5 mL. Yellow single crystals suitable for X-ray diffraction were obtained from the resulting solution by slow evaporation at room temperature.

With the rapid development of chemical substances, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

Reference£º
Article; Balboa, Susana; Carballo, Rosa; Castineiras, Alfonso; Gonzalez-Perez, Josefa Maria; Niclos-Gutierrez, Juan; Polyhedron; vol. 50; 1; (2013); p. 512 – 523;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

New learning discoveries about 14871-92-2

With the rapid development of chemical substances, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

(2,2¡ä-Bipyridine)dichloropalladium(II), cas is 14871-92-2, it is a common heterocyclic compound, the catalyst-palladium compound, its synthesis route is as follows.

Pd(2,2?-bpy)Cl2 (67 mg, 0.2 mmol) was stirred with AgNO3 (68 mg, 0.4 mmol) in water (10 mL) with light excluded at 40 C for 12 h. The suspension obtained was cooled to 0 C in ice bath for 30 min. Then AgCl was removed from the solution by filtration. 1 (52.8 mg, 0.2 mmol) was added to the clear filtrate and pH was measured and found to be 2.0. Then the mixture was stirred at 40 C for 2 h. The resulting light yellow solution was concentrated to a volume of 5 mL at 40 C on a rotary evaporator. Yellow cubes were obtained after one day. The yield was 85 mg (60%). 1H NMR (D2O, pD 2.0, 298 K, delta, ppm): 1?, 3.69 (12 H, s, CH3), 3.60 (4H, s, CH2), 7.93 (4H, s, H6); 2,2?-bpy, 7.23 (4H, dd, H5, 3JH-H = 6.0 Hz, 4JH-H = 3.0 Hz), 7.60 (4H, t, H5?, 3JH-H = 7.2 Hz), 7.79 (4H, dd, H6, 3JH-H = 6.0 Hz), 7.94-8.18 (20H, m, H3,H3?,H4,H4?,H6?).

With the rapid development of chemical substances, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

Reference£º
Article; Khutia, Anupam; Shen, Wei-Zheng; Das, Neeladri; Sanz Miguel, Pablo J.; Lippert, Bernhard; Inorganica Chimica Acta; vol. 417; (2014); p. 274 – 286;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Share a compound : (2,2¡ä-Bipyridine)dichloropalladium(II)

14871-92-2 is used more and more widely, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

(2,2¡ä-Bipyridine)dichloropalladium(II), cas is 14871-92-2, it is a common heterocyclic compound, the catalyst-palladium compound, its synthesis route is as follows.

(bpy)PdCl2 (167 mg, 0.5 mmol) and AgNO3 (170 mg, 1.0 mmol) was mixed in CH3NO2 (40 mL). The mixture was stirred at 60 C for 24 hrs, and the white AgCl precipitate was filtered by a short pad of celite. The filtrate was sampled for ESI-HRMS, and cationic C20H18N4O2Pd22+ (m/z: 279.9743) was observed. Then the filtrate was concentrated and recrystallized to give 25 mg light yellow needle-like solid. Yield 9.0%.

14871-92-2 is used more and more widely, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

Reference£º
Article; Yang, Zhenyu; Ni, Yuxin; Liu, Rui; Song, Kaixuan; Lin, Shaohui; Pan, Qinmin; Tetrahedron Letters; vol. 58; 21; (2017); p. 2034 – 2037;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Share a compound : (2,2¡ä-Bipyridine)dichloropalladium(II)

14871-92-2 is used more and more widely, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

(2,2¡ä-Bipyridine)dichloropalladium(II), cas is 14871-92-2, it is a common heterocyclic compound, the catalyst-palladium compound, its synthesis route is as follows.

General procedure: Palladium(II) chloride (PdCl2), 2,2?-bipyridine (bipy), 1,10-phenanthroline (phen), thiourea (TU, 1), N-methylthiourea (meTU, 2), N-buthylthiourea (buTU, 3), N,N?-diethylthiourea (dietTU, 4) and N,N?-dibuthylthiourea (dibuTU, 5) were purchased as pure reagents at AG, from Sigma Aldrich. Potassium tetrachloropalladate(II) was prepared by the reaction of palladium chloride with a slight excess of potassium chloride. The complexes [Pd(bipy)Cl2] and [Pd(phen)Cl2], were obtained by adding 1 mmol of the respective ligand to 0.326 g (1 mmol) of K2[PdCl4] suspended/dissolved in 40 mL of wet methanol under reflux for about 1 h. The precipitated crystalline powders were recovered by filtration and dried under vacuum for 2 h. 0.25 mmol of these complexes (83 and 89 mg, respectively) were then suspended again in a water/methanol mixture, whereupon 0.5 mmol of the respective thiourea (1-5) was added under reflux. After 1 h, clear yellow to orange solutions were obtained. These solutions were filtrated and the filtrates were kept for 3-5 days at room temperature for crystallization. As a result yellow-red crystals were obtained. The experimental yield of the products, based on Pd, was more than 50%. All the solvents, of analytical grade, were dried and deoxygenated before being used. Elemental analyses were performed at the Microanalytical Laboratory of Redox snc (Milano). Characterization details are extensively quoted in the supplementary material.

14871-92-2 is used more and more widely, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

Reference£º
Article; Rotondo, Archimede; Barresi, Salvatore; Cusumano, Matteo; Rotondo, Enrico; Polyhedron; vol. 45; 1; (2012); p. 23 – 29;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Application of D-Phenylalanine

As the rapid development of chemical substances, we look forward to future research findings about 14871-92-2

The catalyst-palladium compound, name is (2,2¡ä-Bipyridine)dichloropalladium(II),cas is 14871-92-2, mainly used in chemical industry, its synthesis route is as follows.

General procedure: Palladium(II) chloride (PdCl2), 2,2?-bipyridine (bipy), 1,10-phenanthroline (phen), thiourea (TU, 1), N-methylthiourea (meTU, 2), N-buthylthiourea (buTU, 3), N,N?-diethylthiourea (dietTU, 4) and N,N?-dibuthylthiourea (dibuTU, 5) were purchased as pure reagents at AG, from Sigma Aldrich. Potassium tetrachloropalladate(II) was prepared by the reaction of palladium chloride with a slight excess of potassium chloride. The complexes [Pd(bipy)Cl2] and [Pd(phen)Cl2], were obtained by adding 1 mmol of the respective ligand to 0.326 g (1 mmol) of K2[PdCl4] suspended/dissolved in 40 mL of wet methanol under reflux for about 1 h. The precipitated crystalline powders were recovered by filtration and dried under vacuum for 2 h. 0.25 mmol of these complexes (83 and 89 mg, respectively) were then suspended again in a water/methanol mixture, whereupon 0.5 mmol of the respective thiourea (1-5) was added under reflux. After 1 h, clear yellow to orange solutions were obtained. These solutions were filtrated and the filtrates were kept for 3-5 days at room temperature for crystallization. As a result yellow-red crystals were obtained. The experimental yield of the products, based on Pd, was more than 50%. All the solvents, of analytical grade, were dried and deoxygenated before being used. Elemental analyses were performed at the Microanalytical Laboratory of Redox snc (Milano). Characterization details are extensively quoted in the supplementary material.

As the rapid development of chemical substances, we look forward to future research findings about 14871-92-2

Reference£º
Article; Rotondo, Archimede; Barresi, Salvatore; Cusumano, Matteo; Rotondo, Enrico; Polyhedron; vol. 45; 1; (2012); p. 23 – 29;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Application of 14871-92-2

As the rapid development of chemical substances, we look forward to future research findings about 14871-92-2

A common heterocyclic compound, the catalyst-palladium compound, name is (2,2¡ä-Bipyridine)dichloropalladium(II),cas is 14871-92-2, mainly used in chemical industry, its synthesis route is as follows.

10 mL ofa solution of AgNO3 (0.204 g, 1.2 mmol) was added to aqueous suspension of Pd(bipy)Cl2 (0.2 g, 0.6 mmol) acidified to pH 2-3. The formed suspension was homogenized and incubated during 1 h at 60C.

As the rapid development of chemical substances, we look forward to future research findings about 14871-92-2

Reference£º
Article; Nikandrov; Grigor’Eva; Eremin; Ruzanov; Gurzhii; Belyaev; Russian Journal of General Chemistry; vol. 85; 8; (2015); p. 1992 – 1993; Zh. Obshch. Khim.; vol. 85; 8; (2015); p. 1405 – 1406,2;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Share a compound : 14871-92-2

With the rapid development of chemical substances, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

(2,2¡ä-Bipyridine)dichloropalladium(II), cas is 14871-92-2, it is a common heterocyclic compound, the catalyst-palladium compound, its synthesis route is as follows.

A suspension of 1 mmol (0.333 g) of [Pd(bpy)Cl2] in 150 mL ofacetone was treated with 1 mmol (0.228 g) of benzyl dithiocarbamatesodium salt and the mixture was refluxed under continuousmagnetic stirring for 2 h. Stirring continued for another 12 h at 318 K and then filtered.The resulting yellow colored filtrate containing the desired productwas concentrated to 15 mL at 318 K. The orange precipitate formedwas filtered off and washed with diethyl ether. Recrystallizationwas done by dissolving the precipitate in minimum amount ofethanol. Yield: 0.336 g (70%) and decomposes at 207-209 C. Anal.Calcd. for C18H16N3S2ClPd (480.34 g mol-1) Found, (Calcd.) (%): C45.01, (45.05); H, 3.36 (3.34); N, 8.75 (8.76). Molar conductance forthe complex (10-3 M, H2O) is 9.0 mS m2 mol-1. FT-IR (KBr, cm-1):3405 upsilon(N-H); 3020 upsilon(Caro-H); 1550 upsilon(C-N); 1313 upsilons (CNS); 1036 upsilonas(CNS); 503 upsilon (Pd-N); 450 upsilon (Pd-S). 1H NMR (DMSO-d6-D2O, delta ppm):4.71 (d, 2H, H-c), 7.40 (m,1H, H-a), 7.32 (m, 4H, H-b), 8.54 (m, 2H, H-6,60), 8.27 (m, 2H, H-3,30), 8.18 (m, 2H, H-4,40), 7.68 (M, 2H, H-5,50)(Fig. 1). 13C NMR (DMSO-d6, delta ppm): 48.00 (C-e), 139.67 (C-5,5′),139.84 (C-4,4′), 140.00 (C-a), 140.17 (C-b), 140.34 (C-c), 140.50 (C-3,30), 140.60 (C-d), 140.67 (C-1,10), 140.76 (C-f) (Fig. 1). The NMRnumbering schemes are given in Fig. 1. UV-Vis data (H2O, lambdamax/nm,(log epsilon)): 312 (3.40), 249 (3.75), 187 (3.94).

With the rapid development of chemical substances, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

Reference£º
Article; Saeidifar, Maryam; Mirzaei, Hamidreza; Ahmadi Nasab, Navid; Mansouri-Torshizi, Hassan; Journal of Molecular Structure; vol. 1148; (2017); p. 339 – 346;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

New learning discoveries about 14871-92-2

With the rapid development of chemical substances, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

(2,2¡ä-Bipyridine)dichloropalladium(II), cas is 14871-92-2, it is a common heterocyclic compound, the catalyst-palladium compound, its synthesis route is as follows.

General procedure: Silver tetrafluoroborate (AgBF4) (0.6 mmol) was dissolvedin methanol (7 mL); (2,2?-bipyridine) dichloropalladium(II)(Pd(Bpy)Cl2) (0.3 mmol) was dissolved in DMSO (1 mL),and then, the solutions were stirred together at ambient temperature0.5 h. Following gravity filtration, solid 3-hydroxyflavonederivative (0.3 mmol) and triethylamine (0.7 mL)were added to the filtrate. The reaction mixture was stirredfor 0.5 h (2 h for the Fla-OMe). The corresponding bipyridinepalladium flavonolato salt was then recovered usingvacuum filtration and recrystallized in CH3OH/CH3CN solvent;remaining solvent was removed in a vacuum desiccatorovernight.[(PdII(Bpy)(3-Hydroxy-4?-methoxyFla)][BF4] complex1 Yield: 129 mg, 70% (orange crystals) Found: C, 50.51;H, 3.01; N, 4.52; Calcd for C26H19BF4N2O4Pd:C, 50.64;H, 3.11; N, 4.54. UV-Vis lambdamax (CH3CN/nm)(epsilon/M-1 cm-1) (444 (25 200); 1H NMR (CD3CN, 400 MHz): delta 7.92 (d,J = 6.5 Hz, 2H), 7.85 (m, J = 21.9 Hz, 4H), 7.65 (t, J = 18.7,2H), 7.47 (d, J = 7.3 Hz, 2H), 7.28 (t, J = 11.4 Hz, 1 H),7.19 (d, J = 6.5 Hz, 2 H), 7.13 (t, J = 13.9 Hz, 1 H), 6.66 (d,J = 8.1 Hz, 2 H); 13C NMR (CD3CN, 400 MHz): delta = 181.44,161.13, 153.96, 153.65, 152.62, 151.82, 150.65, 148.54,148.20, 140.94, 140.67, 138.01, 133.05, 129.37, 129.14,127.34, 127.27, 125.04, 124.44, 124.03, 123.10, 123.01,121.96, 121.73, 117.45, 115.53, 54.91 ppm. ESI MS: m/z(pos.) 529.04.

With the rapid development of chemical substances, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

Reference£º
Article; Han, Xiaozhen; Whitfield, Sarah; Cotten, Jacob; Transition Metal Chemistry; (2019);,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Introduction of a new synthetic route about 14871-92-2

With the rapid development of chemical substances, we look forward to future research findings about 14871-92-2

(2,2¡ä-Bipyridine)dichloropalladium(II), cas is 14871-92-2, it is a common heterocyclic compound, the catalyst-palladium compound, its synthesis route is as follows.

To a yellow suspension containing 0.30 g (0.90 mmol) of [Pd(bpy)Cl2] in water (20 mL) wereadded a solution containing 0.06 g (0.46 mmol) of HaptHCl in water (10 mL) and an aqueoussolution of NaOH (0.3 M, 10 mL). When the mixture was stirred at 50 C for 3 h, the suspensionturned to a yellow solution. After filtration, a saturated aqueous solution of NaNO3 (10 mL) wasadded to the yellow filtrate, followed by storing in a refrigerator for 1 week. The resulting yellowcrystals of [3](NO3)2 suitable for X-ray analysis were collected by filtration. Yield: 0.19 g (55%).

With the rapid development of chemical substances, we look forward to future research findings about 14871-92-2

Reference£º
Article; Kouno, Masahiro; Miyashita, Yoshitaro; Yoshinari, Nobuto; Konno, Takumi; Chemistry Letters; vol. 44; 11; (2015); p. 1512 – 1514;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Introduction of a new synthetic route about 14871-92-2

With the rapid development of chemical substances, we look forward to future research findings about 14871-92-2

(2,2¡ä-Bipyridine)dichloropalladium(II), cas is 14871-92-2, it is a common heterocyclic compound, the catalyst-palladium compound, its synthesis route is as follows.

General procedure: Palladium(II) chloride (PdCl2), 2,2?-bipyridine (bipy), 1,10-phenanthroline (phen), thiourea (TU, 1), N-methylthiourea (meTU, 2), N-buthylthiourea (buTU, 3), N,N?-diethylthiourea (dietTU, 4) and N,N?-dibuthylthiourea (dibuTU, 5) were purchased as pure reagents at AG, from Sigma Aldrich. Potassium tetrachloropalladate(II) was prepared by the reaction of palladium chloride with a slight excess of potassium chloride. The complexes [Pd(bipy)Cl2] and [Pd(phen)Cl2], were obtained by adding 1 mmol of the respective ligand to 0.326 g (1 mmol) of K2[PdCl4] suspended/dissolved in 40 mL of wet methanol under reflux for about 1 h. The precipitated crystalline powders were recovered by filtration and dried under vacuum for 2 h. 0.25 mmol of these complexes (83 and 89 mg, respectively) were then suspended again in a water/methanol mixture, whereupon 0.5 mmol of the respective thiourea (1-5) was added under reflux. After 1 h, clear yellow to orange solutions were obtained. These solutions were filtrated and the filtrates were kept for 3-5 days at room temperature for crystallization. As a result yellow-red crystals were obtained. The experimental yield of the products, based on Pd, was more than 50%. All the solvents, of analytical grade, were dried and deoxygenated before being used. Elemental analyses were performed at the Microanalytical Laboratory of Redox snc (Milano). Characterization details are extensively quoted in the supplementary material.

With the rapid development of chemical substances, we look forward to future research findings about 14871-92-2

Reference£º
Article; Rotondo, Archimede; Barresi, Salvatore; Cusumano, Matteo; Rotondo, Enrico; Polyhedron; vol. 45; 1; (2012); p. 23 – 29;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method