The important role of (2,2¡ä-Bipyridine)dichloropalladium(II)

With the complex challenges of chemical substances, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

Name is (2,2¡ä-Bipyridine)dichloropalladium(II), as a common heterocyclic compound, it belongs to catalyst-palladium compound, and cas is 14871-92-2, its synthesis route is as follows.,14871-92-2

Solid [Pd(bpy)Cl2] (0.166 g, 0.5 mmol) was added to dl-H2pa (0.064 g, 0.5 mmol) in ethanol (8 mL) containing triethyl amine (0.05 g, 0.5 mmol). The mixture was stirred for 72 h. The yellow-beige precipitate was filtered off, washed with ethanol and air-dried. Yield: 45%. Anal. Calcd. for C16ClH22N3O4Pd: C, 41.6; H, 4.8; N, 9.1; Cl, 7.7; Pd, 23.0%, Found: C, 41.5; H, 4.4; N, 9.0; Cl, 7.6; Pd, 23.1%. Conductivity data (10-3 M in DMF):LambdaM = 97.0 ohm-1. IR (cm-1): nu(NH) 3106; nuas(COO-) 1659; nus(COO-) 1411; nu(Pd-O) 521; nu(Pd-N) 471 cm-1. Raman: nuas(COO-) 1598; nus(COO-) 1402; delta(NH) 1560; nu(Pd-O) 529; nu(Pd-N) 450 cm-1; 1H NMR (d6-DMSO/TMS, ppm), 3.73 (d, H, Halpha); 2.50 (m, 2H, Hbeta); 2.07 (m, 2H, Hgamma); 1.30 (m, 2H, Hdelta); 3.45, 3.10 (m, 2H, Hepsilon); 13.19 (s, H, NH), ESI-MS: m/z, 816.7 {Pd(Hpa)(bpy)]2Cl}+, 780.7 {[Pd(bpy)(Hpa)]2}+, 390.0 [Pd(bpy)(Hpa)]+, 263.0 [Pd(bpy)]+.

With the complex challenges of chemical substances, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

Reference£º
Article; Alie El-Deen, Afaf A.; El-Askalany, Abd El-Monem E.; Halaoui, Ruba; Jean-Claude, Bertrand J.; Butler, Ian S.; Mostafa, Sahar I.; Journal of Molecular Structure; vol. 1036; (2013); p. 161 – 167;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

The important role of (2,2¡ä-Bipyridine)dichloropalladium(II)

With the complex challenges of chemical substances, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

Name is (2,2¡ä-Bipyridine)dichloropalladium(II), as a common heterocyclic compound, it belongs to catalyst-palladium compound, and cas is 14871-92-2, its synthesis route is as follows.,14871-92-2

General procedure: Silver tetrafluoroborate (AgBF4) (0.6 mmol) was dissolvedin methanol (7 mL); (2,2?-bipyridine) dichloropalladium(II)(Pd(Bpy)Cl2) (0.3 mmol) was dissolved in DMSO (1 mL),and then, the solutions were stirred together at ambient temperature0.5 h. Following gravity filtration, solid 3-hydroxyflavonederivative (0.3 mmol) and triethylamine (0.7 mL)were added to the filtrate. The reaction mixture was stirredfor 0.5 h (2 h for the Fla-OMe). The corresponding bipyridinepalladium flavonolato salt was then recovered usingvacuum filtration and recrystallized in CH3OH/CH3CN solvent;remaining solvent was removed in a vacuum desiccator overnight.

With the complex challenges of chemical substances, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

Reference£º
Article; Han, Xiaozhen; Whitfield, Sarah; Cotten, Jacob; Transition Metal Chemistry; (2019);,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Analyzing the synthesis route of (2,2¡ä-Bipyridine)dichloropalladium(II)

With the synthetic route has been constantly updated, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II),belong catalyst-palladium compound

As a common heterocyclic compound, it belong catalyst-palladium compound,(2,2¡ä-Bipyridine)dichloropalladium(II),14871-92-2,Molecular formula: C10H8Cl2N2Pd,mainly used in chemical industry, its synthesis route is as follows.,14871-92-2

[(bpy)PdCl2] (0.332 g, 1 mmol) and Tl+L (0.475 g, 1 mmol) in 10 mL of dichloromethane were stirred for 18 h at room temperature. The resulting solution was filtered and evaporated to about 1 mL in volume. Then hexane (10 mL) was added to precipitate as a red-orange solid. The solid was repeatedly washed with diethyl ether (3 ¡Á 10 mL) and dried under vacuum to give the pure complex (0.297 g, 52.31% yield, and 1 mmol). Anal. Calc. (%) for C23H16ClN5O2PdS (568.9752): C, 48.61; H, 2.84; N, 12.32; Found (%): C, 48.59; H, 2.82; N, 12.29. TOF-MS: 532.0060 [M – Cl] +. FT-IR: 2152 (m, NCN) cm-1. 1H NMR (DMSO-d6): delta 7.16-7.20 (m, 2H, H-Ar), 7.49-7.51 (m, 2H, H-Ar), 7.65 (t, 1H, H-5, 3J 7.2), 7.74 (t, 1H, H-5′, 3J 7.2), 7.91-7.99 (m, 4H, H-Ar), 8.34-8.40 (m, 4H, H-Ar), 8.76 (d, 1H, H-6, 3J 7.2), 9.09 (d, 1H, H-6′, 3J 7.2). 13C NMR (DMSO-d6): delta 114.0 (NCN), 119.9, 121.9, 124.0, 125.9, 128.9, 133.1, 137.8, 143.0, 147.0, 149.0, 150.7, 157.9.

With the synthetic route has been constantly updated, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II),belong catalyst-palladium compound

Reference£º
Article; Tabrizi, Leila; Zouchoune, Bachir; Zaiter, Abdallah; Inorganica Chimica Acta; vol. 499; (2020);,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Analyzing the synthesis route of 14871-92-2

With the synthetic route has been constantly updated, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II),belong catalyst-palladium compound

As a common heterocyclic compound, it belong catalyst-palladium compound,(2,2¡ä-Bipyridine)dichloropalladium(II),14871-92-2,Molecular formula: C10H8Cl2N2Pd,mainly used in chemical industry, its synthesis route is as follows.,14871-92-2

General procedure: To a vigorously stirred solution of BzpheH2 (32.32 mg, 0.12 mmol) in 8 mL CH3OH/H2O (V:V 1:1), [Pd(bipy)Cl2] (20 mg, 0.06 mmol) was added. The mixture was heated to 50C and adjusted to pH 8-9 by NaOH solution, and then stirred for 2 h. The solution was concentrated to about 80% of the original volume. The complex I-a was separated from the solution after a few days.

With the synthetic route has been constantly updated, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II),belong catalyst-palladium compound

Reference£º
Article; Wang, Li-Wei; Liu, Si-Yuan; Wang, Jin-Jie; Peng, Wen; Li, Sheng-Hui; Zhou, Guo-Qiang; Qin, Xin-Ying; Wang, Shu-Xiang; Zhang, Jin-Chao; Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry; vol. 45; 7; (2015); p. 1049 – 1056;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Analyzing the synthesis route of 14871-92-2

With the synthetic route has been constantly updated, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II),belong catalyst-palladium compound

As a common heterocyclic compound, it belong catalyst-palladium compound,(2,2¡ä-Bipyridine)dichloropalladium(II),14871-92-2,Molecular formula: C10H8Cl2N2Pd,mainly used in chemical industry, its synthesis route is as follows.,14871-92-2

To a yellow suspension containing 0.20 g (0.60 mmol) of [Pd(bpy)Cl2] in water (20 mL)was added 0.08 g (0.60 mmol) of HaptHCl. After the mixture was stirred at 50 C for 7 h, theresulting yellow solution was filtered. To the yellow filtrate was added an aqueous solution ofNaClO4 (2 M, 10 mL), followed by standing at room temperature for 1 d. The resulting yellowcrystals of [1](ClO4)4 suitable for X-ray analysis were collected by filtration. Yield: 0.32 g (87%).

With the synthetic route has been constantly updated, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II),belong catalyst-palladium compound

Reference£º
Article; Kouno, Masahiro; Miyashita, Yoshitaro; Yoshinari, Nobuto; Konno, Takumi; Chemistry Letters; vol. 44; 11; (2015); p. 1512 – 1514;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Brief introduction of 14871-92-2

With the synthetic route has been constantly updated, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II),belong catalyst-palladium compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO10,mainly used in chemical industry, its synthesis route is as follows.,14871-92-2

General procedure: Palladium(II) chloride (PdCl2), 2,2?-bipyridine (bipy), 1,10-phenanthroline (phen), thiourea (TU, 1), N-methylthiourea (meTU, 2), N-buthylthiourea (buTU, 3), N,N?-diethylthiourea (dietTU, 4) and N,N?-dibuthylthiourea (dibuTU, 5) were purchased as pure reagents at AG, from Sigma Aldrich. Potassium tetrachloropalladate(II) was prepared by the reaction of palladium chloride with a slight excess of potassium chloride. The complexes [Pd(bipy)Cl2] and [Pd(phen)Cl2], were obtained by adding 1 mmol of the respective ligand to 0.326 g (1 mmol) of K2[PdCl4] suspended/dissolved in 40 mL of wet methanol under reflux for about 1 h. The precipitated crystalline powders were recovered by filtration and dried under vacuum for 2 h. 0.25 mmol of these complexes (83 and 89 mg, respectively) were then suspended again in a water/methanol mixture, whereupon 0.5 mmol of the respective thiourea (1-5) was added under reflux. After 1 h, clear yellow to orange solutions were obtained. These solutions were filtrated and the filtrates were kept for 3-5 days at room temperature for crystallization. As a result yellow-red crystals were obtained. The experimental yield of the products, based on Pd, was more than 50%. All the solvents, of analytical grade, were dried and deoxygenated before being used. Elemental analyses were performed at the Microanalytical Laboratory of Redox snc (Milano). Characterization details are extensively quoted in the supplementary material.

With the synthetic route has been constantly updated, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II),belong catalyst-palladium compound

Reference£º
Article; Rotondo, Archimede; Barresi, Salvatore; Cusumano, Matteo; Rotondo, Enrico; Polyhedron; vol. 45; 1; (2012); p. 23 – 29;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Application of 7-Chloro-1,2,3,4-tetrahydroisoquinoline

As the rapid development of chemical substances, we look forward to future research findings about 14871-92-2

The catalyst-palladium compound, cas is 14871-92-2 name is (2,2¡ä-Bipyridine)dichloropalladium(II), mainly used in chemical industry, its synthesis route is as follows.

To a yellow suspension containing 0.10 g (0.31 mmol) of [Pd(bpy)Cl2] in water (10 mL) wereadded a solution containing 0.04 g (0.32 mmol) of HaptHCl in water (10 mL) and an aqueoussolution of NaOH (0.25 M, 2.5 mL). When the mixture was stirred at 50 C for 3 h, the suspensionturned to a yellow solution. After filtration, a saturated aqueous solution of NaNO3 (5 mL) wasadded to the yellow filtrate. The mixture was stood at room temperature for 2 d, and the resultingyellow crystals of [2](NO3)2 was collected by filtration. Yield: 0.03 g (36%).

As the rapid development of chemical substances, we look forward to future research findings about 14871-92-2

Reference£º
Article; Kouno, Masahiro; Miyashita, Yoshitaro; Yoshinari, Nobuto; Konno, Takumi; Chemistry Letters; vol. 44; 11; (2015); p. 1512 – 1514;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Application of Phthalazine

As the rapid development of chemical substances, we look forward to future research findings about 14871-92-2

The catalyst-palladium compound, name is (2,2¡ä-Bipyridine)dichloropalladium(II),cas is 14871-92-2, mainly used in chemical industry, its synthesis route is as follows.

Solid [Pd(bpy)Cl2] (0.085 g, 0.25 mmol) was added to Hdahmp(0.04 g, 0.25 mmol) in ethanol (10 mL). Et3N (0.02 cm3, 0.20 mmol)was then added and the reaction mixture was refluxed for 48 h. Abrown precipitate was obtained which was filtered off, washedwith methanol and air-dried. Yield: 81%. Anal. Calc. for C14H13ClN6-OPdS: C, 36.9; Cl, 7.8; H, 2.9; N, 18.5; S, 7.0; Pd, 23.4. Found: C,37.1; Cl, 7.8; H, 2.8; N, 18.6; S, 7.2; Pd, 23.3%. Conductivity data(103 M in DMF): KM = 88.0 ohm1 cm2 mol1.

As the rapid development of chemical substances, we look forward to future research findings about 14871-92-2

Reference£º
Article; El-Morsy, Fatema A.; Jean-Claude, Bertrand J.; Butler, Ian S.; El-Sayed, Shadia A.; Mostafa, Sahar I.; Inorganica Chimica Acta; vol. 423; PB; (2014); p. 144 – 155;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

New learning discoveries about 14871-92-2

With the rapid development of chemical substances, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

(2,2¡ä-Bipyridine)dichloropalladium(II), cas is 14871-92-2, it is a common heterocyclic compound, the catalyst-palladium compound, its synthesis route is as follows.

Mefenamic acid (0.40 mmol) was dissolved in methanol (15 mL) followed by the addition of KOH (0.40 mmol). After 60 min of stirring, the resulting solution was slowly added to an aqueous solution of [PdCl2(bipy)] (0.20 mmol). After 40 min of constant stirring, the yellow solid obtained was collected by filtration, washed with ethanol and dried in a desiccator with P4O10. The yield was 63%. Anal. Calc. for [Pd(C15H14NO2)2(bipy)] (%): C 64.6; H 4.88;N 7.54. Found: C 63.3; H 4.74; N 7.62. The complex is soluble inchloroform and insoluble in water and DMSO. As already observed for the Pd-tra complex, no single crystals were obtained to perform an X ray structural characterization. The [PdCl2(bipy)] complexused as a precursor in the synthesis of Pd-mef was synthesized as described in the literature [21].

With the rapid development of chemical substances, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

Reference£º
Article; Carvalho, Marcos A.; Arruda, Eduardo G.R.; Profirio, Daniel M.; Gomes, Alexandre F.; Gozzo, Fabio C.; Formiga, Andre L.B.; Corbi, Pedro P.; Journal of Molecular Structure; vol. 1100; (2015); p. 6 – 13;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

New learning discoveries about 14871-92-2

With the rapid development of chemical substances, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

(2,2¡ä-Bipyridine)dichloropalladium(II), cas is 14871-92-2, it is a common heterocyclic compound, the catalyst-palladium compound, its synthesis route is as follows.

Direct synthesis from 1a, CF3SO3Ag, and [Pd(bipy)Cl2]. A solution of Pd(bipy)Cl2 (0.10 g, 0.30 mmol) in 5 mL of CH3CN and a solution of CF3SO3Ag (0.15 g, 0.58 mmol) in 5 mL of CH3CN were mixed and heated under reflux for a day. Precipitates were filtered off and the solvent was evaporated. The resultant pale yellow powder was dissolved in a mixture of CH3CN and CHCl3, and then 1a (0.35 g, 0.58 mmol) was added. The mixture was heated under reflux for a day, and then, filtered and the solvents were removed under reduced pressure. Resultant material was recrystallized from CH3CN- CHCl3 mixture twice. White fibers (0.27 g, 46.0%) were obtained. Mp. 249-252 C (dec.). 1H NMR ( CDCl3/CD3CN = 4/1, v/v, 300 MHz): delta 10.41 (brs, 8H, OH), 9.35 (brs, 4H, Py-H), 8.33 (d, J = 7.5 Hz, 2H, bipy-H), 8.26 (t, J = 7.0 Hz, 2H, bipy-H), 7.92 (brs, 4H, Py-H), 7.51 (t, 2H, bipy-H), 7.26 (d, J = 4.4 Hz, 2H, bipy- H), 6.99 (s, 4H, ArH), 6.95 (s, 4H, ArH), 6.89 (s, 4H, ArH), 6.67 (s, 4H, ArH), 4.11 (d, J = 13.8 Hz, 2H. CH2), 4.02 (d, J = 13.6 Hz, 4H. CH2), 3.80 (brs, 4H, CH2), 3.66 (brd, J = 10.8 Hz, 4H, CH2), 3.47 (brd, J = 13.8 Hz, 4H. CH2), 3.43 (brd, J = 12.9 Hz, 2H. CH2), 3.32 (d, J = 12.9 Hz, 4H, CH2), 2.19, 2.17 (s, 24H, CH3). 13C NMR ( CDCl3/CD3CN = 4/1, v/v, 75.6 MHz): delta 157.0, 153.2, 151.7, 150.7, 149.7, 147.2, 142.3, 131.2, 131.1, 130.0, 129.6, 129.5, 128.2, 128.0, 127.8, 127.8, 127.7, 124.2, 123.0, 121.0, 118.8, 57.7, 56.7, 32.0, 31.5, 20.5, 20.3. FABMS: m/z: 1611.5 ( M+); HRMS (FAB): calcd for C89H88F3N6O11S106Pd ( M2+ + TflO-), 1611.5219. Found: 1611.5231.

With the rapid development of chemical substances, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

Reference£º
Article; Takemura, Hiroyuki; Mogami, Yukako; Okayama, Kanae; Nagashima, Noriko; Orioka, Kana; Hayano, Yuri; Kobayashi, Asako; Iwanaga, Tetsuo; Sako, Katsuya; Journal of Inclusion Phenomena and Macrocyclic Chemistry; vol. 95; 3-4; (2019); p. 235 – 246;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method