Extracurricular laboratory: Synthetic route of 14871-92-2

The chemical industry reduces the impact on the environment during synthesis,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),I believe this compound will play a more active role in future production and life.

14871-92-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (2,2¡ä-Bipyridine)dichloropalladium(II), cas is 14871-92-2,the catalyst-palladium compound, it is a common compound, a new synthetic route is introduced below.

General procedure: Silver tetrafluoroborate (AgBF4) (0.6 mmol) was dissolvedin methanol (7 mL); (2,2?-bipyridine) dichloropalladium(II)(Pd(Bpy)Cl2) (0.3 mmol) was dissolved in DMSO (1 mL),and then, the solutions were stirred together at ambient temperature0.5 h. Following gravity filtration, solid 3-hydroxyflavonederivative (0.3 mmol) and triethylamine (0.7 mL)were added to the filtrate. The reaction mixture was stirredfor 0.5 h (2 h for the Fla-OMe). The corresponding bipyridinepalladium flavonolato salt was then recovered usingvacuum filtration and recrystallized in CH3OH/CH3CN solvent;remaining solvent was removed in a vacuum desiccator overnight.

The chemical industry reduces the impact on the environment during synthesis,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),I believe this compound will play a more active role in future production and life.

Reference£º
Article; Han, Xiaozhen; Whitfield, Sarah; Cotten, Jacob; Transition Metal Chemistry; (2019);,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Some scientific research about (2,2¡ä-Bipyridine)dichloropalladium(II)

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(2,2¡ä-Bipyridine)dichloropalladium(II),14871-92-2,its application will become more common.

14871-92-2 A common heterocyclic compound, 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

General procedure: Silver tetrafluoroborate (AgBF4) (0.6 mmol) was dissolvedin methanol (7 mL); (2,2?-bipyridine) dichloropalladium(II)(Pd(Bpy)Cl2) (0.3 mmol) was dissolved in DMSO (1 mL),and then, the solutions were stirred together at ambient temperature0.5 h. Following gravity filtration, solid 3-hydroxyflavonederivative (0.3 mmol) and triethylamine (0.7 mL)were added to the filtrate. The reaction mixture was stirredfor 0.5 h (2 h for the Fla-OMe). The corresponding bipyridinepalladium flavonolato salt was then recovered usingvacuum filtration and recrystallized in CH3OH/CH3CN solvent;remaining solvent was removed in a vacuum desiccator overnight.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(2,2¡ä-Bipyridine)dichloropalladium(II),14871-92-2,its application will become more common.

Reference£º
Article; Han, Xiaozhen; Whitfield, Sarah; Cotten, Jacob; Transition Metal Chemistry; (2019);,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

The important role of 14871-92-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (2,2¡ä-Bipyridine)dichloropalladium(II), 14871-92-2

14871-92-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (2,2¡ä-Bipyridine)dichloropalladium(II), cas is 14871-92-2,the catalyst-palladium compound, it is a common compound, a new synthetic route is introduced below.

General procedure: To a stirred suspension of [Pd(bpy)Cl2] (0.03 g, 0.1 mmol) or[Pd(phen)Cl2] (0.04 g, 0.1 mmol) in MeOH (10 mL) a solution ofHhmbt (0.023 g, 0.1 mmol) in MeOH containing KOH (0.006 g,0.1 mmol; 10 mL) was added drop by drop with stirring. The reactionmixture was warmed for 48 h, upon which a yellow-orangeprecipitate was filtered off, washed with MeOH, Et2O and driedin vacuo.For[Pd(bpy)(hmbt)]Cl2H2O: Yield: 0.07 g (51%). ElementalAnal.: Calcd. C, 49.5; H, 4.3; N, 12.6; Pd, 19.1 (C23H24N5O3Pd);Found: C, 49.7; H, 4.2; N, 12.7; Pd, 19.1%. Conductivity data(103 M in DMF): KM = 84.0 ohm1. IR (cm1): m(CN), 1621;m(CO), 1251; m(N-N), 1141; m(Pd-O), 500; m(Pd-N), 459. Raman(cm1): m(CN), 1602; m(CO), 1251; m(N-N), 1141; m(Pd-O), 501;m(Pd-N), 460. 1H NMR (ppm): 8.00 (H(3), d, J = 6 Hz, 1H); 7.75(H(6), S, 1H); 7.86 (H(7), d, J = 5.4 Hz, 1H); 7.73 (H(8), t, J = 5 Hz,1H); 7.69 (H(9), t, J = 5 Hz, 1H); 7.22 (H(10), d, J = 5.2 Hz, 1H);2.50 (CH3, S, 3H). MS (m/z): 486.4 (Calcd. 486.4), 368.2 (Calcd.368.4), 292.4 (Calcd. 292.4), 262.4 (Calcd. 262.4), 156.3 (Calcd.156.0).For[Pd(phen)(hmbt)]ClH2O: Yield: 0.08 g (54%). ElementalAnal.: Calcd. C, 53.2; H, 3.9; N, 12.4; Pd, 18.7 (C25H22N5O2Pd);Found: C, 53.3; H, 4.0; N, 12.3; Pd, 18.6%. Conductivity data(103 M in DMF): KM = 81.0 ohm1. IR (cm1): m(CN), 1600;m(CO), 1252; m(N-N), 1138; m(Pd-O), 564; m(Pd-N), 495. Raman(cm1): m(CN), 1604; m(CO), 1252; m(N-N), 1139; m(Pd-O), 565;m(Pd-N), 495. 1H NMR (ppm): 7.96 (H(3), d, J = 5.1 Hz, 1H); 7.30(H(6), S, 1H); 7.60 (H(7), d, J = 4.5 Hz, 1H); 7.77 (H(8), t,J = 4.2 Hz, 1H); 7.73 (H(9), t, J = 4.5 Hz, 1H); 7.22 (H(10), d,J = 4.2 Hz, 1H); 2.50 (CH3, S, 3H). MS (m/z): 510.4 (Calcd. 510.4),286.4 (Calcd. 286.4), 180.6 (Calcd. 180.0).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (2,2¡ä-Bipyridine)dichloropalladium(II), 14871-92-2

Reference£º
Article; El-Asmy, Hala A.; Butler, Ian S.; Mouhri, Zhor S.; Jean-Claude, Bertrand J.; Emmam, Mohamed S.; Mostafa, Sahar I.; Journal of Molecular Structure; vol. 1059; 1; (2014); p. 193 – 201;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Application of D-Phenylalanine

14871-92-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,14871-92-2 ,(2,2¡ä-Bipyridine)dichloropalladium(II), other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the catalyst-palladium compound, (2,2¡ä-Bipyridine)dichloropalladium(II), cas is 14871-92-2 its synthesis route is as follows.

General procedure: Palladium(II) chloride (PdCl2), 2,2?-bipyridine (bipy), 1,10-phenanthroline (phen), thiourea (TU, 1), N-methylthiourea (meTU, 2), N-buthylthiourea (buTU, 3), N,N?-diethylthiourea (dietTU, 4) and N,N?-dibuthylthiourea (dibuTU, 5) were purchased as pure reagents at AG, from Sigma Aldrich. Potassium tetrachloropalladate(II) was prepared by the reaction of palladium chloride with a slight excess of potassium chloride. The complexes [Pd(bipy)Cl2] and [Pd(phen)Cl2], were obtained by adding 1 mmol of the respective ligand to 0.326 g (1 mmol) of K2[PdCl4] suspended/dissolved in 40 mL of wet methanol under reflux for about 1 h. The precipitated crystalline powders were recovered by filtration and dried under vacuum for 2 h. 0.25 mmol of these complexes (83 and 89 mg, respectively) were then suspended again in a water/methanol mixture, whereupon 0.5 mmol of the respective thiourea (1-5) was added under reflux. After 1 h, clear yellow to orange solutions were obtained. These solutions were filtrated and the filtrates were kept for 3-5 days at room temperature for crystallization. As a result yellow-red crystals were obtained. The experimental yield of the products, based on Pd, was more than 50%. All the solvents, of analytical grade, were dried and deoxygenated before being used. Elemental analyses were performed at the Microanalytical Laboratory of Redox snc (Milano). Characterization details are extensively quoted in the supplementary material.

14871-92-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,14871-92-2 ,(2,2¡ä-Bipyridine)dichloropalladium(II), other downstream synthetic routes, hurry up and to see

Reference£º
Article; Rotondo, Archimede; Barresi, Salvatore; Cusumano, Matteo; Rotondo, Enrico; Polyhedron; vol. 45; 1; (2012); p. 23 – 29;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Downstream synthetic route of (2,2¡ä-Bipyridine)dichloropalladium(II)

14871-92-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,14871-92-2 ,(2,2¡ä-Bipyridine)dichloropalladium(II), other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the catalyst-palladium compound, (2,2¡ä-Bipyridine)dichloropalladium(II), cas is 14871-92-2 its synthesis route is as follows.

[Pd(bpy)Cl2] (0.10 g, 0.30 mmol) was suspended in water (4 mL). Lactic acid (0.03 g, 0.28 mmol) and 1 M NaOH (0.60 mL) were dissolved in water (10 mL) and then added to the mixture, which was heated under reflux at 150 C with continuous stirring until a clear yellow solution was obtained. The solution was filtered and acetone (10 mL) was added to the solution. The reaction mixture was cooled to 4 C for a long time (2 months), resulting yellow crystals of complex 5. Yield: 33%. m.p.: 250 C. Elemental Anal. Calc. for C13H13ClN2OPd (355.10): C, 44.0; H, 3.7; N, 7.9. Found: C, 44.1; H, 3.6; N, 7.8%. IR (KBr, numax/cm-1): 1634 s, nu(CO); 1621 s, nu(CC); 1496 m, 1443 s, nu(CC,CN). Far-IR (Nujol, numax/cm-1): 333 m, nu(Pd-Cl); 285 m, nu(Pd-C); 243 m, nu(Pd-N). 1H NMR (CDCl3, delta/ppm): 2.40 (s, 3H, c), 3.01 (s, 2H, a), 7.61 (m, 2H, 5,5?), 8.02 (m, 4H, 3,3? and 4,4?), 9.31, 9.51 (2d, 2H, 6,6?).

14871-92-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,14871-92-2 ,(2,2¡ä-Bipyridine)dichloropalladium(II), other downstream synthetic routes, hurry up and to see

Reference£º
Article; Balboa, Susana; Carballo, Rosa; Castineiras, Alfonso; Gonzalez-Perez, Josefa Maria; Niclos-Gutierrez, Juan; Polyhedron; vol. 50; 1; (2013); p. 512 – 523;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

The important role of 14871-92-2

The chemical industry reduces the impact on the environment during synthesis,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),I believe this compound will play a more active role in future production and life.

14871-92-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (2,2¡ä-Bipyridine)dichloropalladium(II), cas is 14871-92-2,the catalyst-palladium compound, it is a common compound, a new synthetic route is introduced below.

Synthesis of [Pd{OC(O)CH2N(COPh)}(bipy)] 2 A mixture of [PdCl2(bipy)] (210 mg, 0.63 mmol) with hippuric acid (113 mg, 0.63 mmol) and silver(I) oxide (600 mg) in dichloromethane (30 mL) was refluxed for 3.5 h. Methanol (30 mL) was added, and the mixture filtered to give a clear yellow solution. The solid residue was extracted with an additional 40 mL of dichloromethane-methanol (1:1 v/v), and the filtrates combined. The solution was evaporated to dryness, redissolved in dichloromethane (40 mL) and the product precipitated by addition of petroleum spirits (40 mL). The solid was filtered, washed with petroleum spirits (10 mL) and dried under vacuum to give 2 as an orange solid (192 mg, 69%). Found: C 50.2; H 3.45; N 9.1. C18H15N3O3Pd requires C 50.5; H 3.5; N 9.8%. (0043) 1H NMR, delta 9.12-6.91 (m, bipy and Ph), 4.26 (s, CH2). ESI MS (added NaHCO2, capillary exit voltage 140 V): [M+Na]+ m/z 461.88 (100%), calculated for C19H15N3O3PdNa m/z 462.00.

The chemical industry reduces the impact on the environment during synthesis,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),I believe this compound will play a more active role in future production and life.

Reference£º
Article; Sim, Sophie A.; Saunders, Graham C.; Lane, Joseph R.; Henderson, William; Inorganica Chimica Acta; vol. 450; (2016); p. 285 – 292;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Some scientific research about (2,2¡ä-Bipyridine)dichloropalladium(II)

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

14871-92-2 A common heterocyclic compound, 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

General procedure: Palladium(II) chloride (PdCl2), 2,2?-bipyridine (bipy), 1,10-phenanthroline (phen), thiourea (TU, 1), N-methylthiourea (meTU, 2), N-buthylthiourea (buTU, 3), N,N?-diethylthiourea (dietTU, 4) and N,N?-dibuthylthiourea (dibuTU, 5) were purchased as pure reagents at AG, from Sigma Aldrich. Potassium tetrachloropalladate(II) was prepared by the reaction of palladium chloride with a slight excess of potassium chloride. The complexes [Pd(bipy)Cl2] and [Pd(phen)Cl2], were obtained by adding 1 mmol of the respective ligand to 0.326 g (1 mmol) of K2[PdCl4] suspended/dissolved in 40 mL of wet methanol under reflux for about 1 h. The precipitated crystalline powders were recovered by filtration and dried under vacuum for 2 h. 0.25 mmol of these complexes (83 and 89 mg, respectively) were then suspended again in a water/methanol mixture, whereupon 0.5 mmol of the respective thiourea (1-5) was added under reflux. After 1 h, clear yellow to orange solutions were obtained. These solutions were filtrated and the filtrates were kept for 3-5 days at room temperature for crystallization. As a result yellow-red crystals were obtained. The experimental yield of the products, based on Pd, was more than 50%. All the solvents, of analytical grade, were dried and deoxygenated before being used. Elemental analyses were performed at the Microanalytical Laboratory of Redox snc (Milano). Characterization details are extensively quoted in the supplementary material.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

Reference£º
Article; Rotondo, Archimede; Barresi, Salvatore; Cusumano, Matteo; Rotondo, Enrico; Polyhedron; vol. 45; 1; (2012); p. 23 – 29;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

A new synthetic route of (2,2¡ä-Bipyridine)dichloropalladium(II)

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

A common heterocyclic compound, 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 14871-92-2

General procedure: Silver tetrafluoroborate (AgBF4) (0.6 mmol) was dissolvedin methanol (7 mL); (2,2?-bipyridine) dichloropalladium(II)(Pd(Bpy)Cl2) (0.3 mmol) was dissolved in DMSO (1 mL),and then, the solutions were stirred together at ambient temperature0.5 h. Following gravity filtration, solid 3-hydroxyflavonederivative (0.3 mmol) and triethylamine (0.7 mL)were added to the filtrate. The reaction mixture was stirredfor 0.5 h (2 h for the Fla-OMe). The corresponding bipyridinepalladium flavonolato salt was then recovered usingvacuum filtration and recrystallized in CH3OH/CH3CN solvent;remaining solvent was removed in a vacuum desiccator overnight.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

Reference£º
Article; Han, Xiaozhen; Whitfield, Sarah; Cotten, Jacob; Transition Metal Chemistry; (2019);,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Some scientific research about (2,2¡ä-Bipyridine)dichloropalladium(II)

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

14871-92-2 A common heterocyclic compound, 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Direct synthesis from 1a, CF3SO3Ag, and [Pd(bipy)Cl2]. A solution of Pd(bipy)Cl2 (0.10 g, 0.30 mmol) in 5 mL of CH3CN and a solution of CF3SO3Ag (0.15 g, 0.58 mmol) in 5 mL of CH3CN were mixed and heated under reflux for a day. Precipitates were filtered off and the solvent was evaporated. The resultant pale yellow powder was dissolved in a mixture of CH3CN and CHCl3, and then 1a (0.35 g, 0.58 mmol) was added. The mixture was heated under reflux for a day, and then, filtered and the solvents were removed under reduced pressure. Resultant material was recrystallized from CH3CN- CHCl3 mixture twice. White fibers (0.27 g, 46.0%) were obtained. Mp. 249-252 C (dec.). 1H NMR ( CDCl3/CD3CN = 4/1, v/v, 300 MHz): delta 10.41 (brs, 8H, OH), 9.35 (brs, 4H, Py-H), 8.33 (d, J = 7.5 Hz, 2H, bipy-H), 8.26 (t, J = 7.0 Hz, 2H, bipy-H), 7.92 (brs, 4H, Py-H), 7.51 (t, 2H, bipy-H), 7.26 (d, J = 4.4 Hz, 2H, bipy- H), 6.99 (s, 4H, ArH), 6.95 (s, 4H, ArH), 6.89 (s, 4H, ArH), 6.67 (s, 4H, ArH), 4.11 (d, J = 13.8 Hz, 2H. CH2), 4.02 (d, J = 13.6 Hz, 4H. CH2), 3.80 (brs, 4H, CH2), 3.66 (brd, J = 10.8 Hz, 4H, CH2), 3.47 (brd, J = 13.8 Hz, 4H. CH2), 3.43 (brd, J = 12.9 Hz, 2H. CH2), 3.32 (d, J = 12.9 Hz, 4H, CH2), 2.19, 2.17 (s, 24H, CH3). 13C NMR ( CDCl3/CD3CN = 4/1, v/v, 75.6 MHz): delta 157.0, 153.2, 151.7, 150.7, 149.7, 147.2, 142.3, 131.2, 131.1, 130.0, 129.6, 129.5, 128.2, 128.0, 127.8, 127.8, 127.7, 124.2, 123.0, 121.0, 118.8, 57.7, 56.7, 32.0, 31.5, 20.5, 20.3. FABMS: m/z: 1611.5 ( M+); HRMS (FAB): calcd for C89H88F3N6O11S106Pd ( M2+ + TflO-), 1611.5219. Found: 1611.5231.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

Reference£º
Article; Takemura, Hiroyuki; Mogami, Yukako; Okayama, Kanae; Nagashima, Noriko; Orioka, Kana; Hayano, Yuri; Kobayashi, Asako; Iwanaga, Tetsuo; Sako, Katsuya; Journal of Inclusion Phenomena and Macrocyclic Chemistry; vol. 95; 3-4; (2019); p. 235 – 246;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

A new synthetic route of (2,2¡ä-Bipyridine)dichloropalladium(II)

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

A common heterocyclic compound, 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 14871-92-2

[Pd(bpy)Cl2] (.67 g, 2 mmol) was suspended in 200 mlacetone-water (3:1 v/v) and AgNO3 (.68 g, 4 mmol) wasadded with constant stirring. This mixture was heated at328 K with stirring in the dark for 6 h followed by stirringfor 16 h at room temperature. The AgCl precipitatewas removed by filtration using Whatman 42 filter paper.The clear yellow filtrate was mixed with mu-paraxylidinebisdithiocarbamatedisodium salt (.33 g, 1 mmol).The reaction mixture was subsequently stirred for 5 h at318 K and then filtered. The clear solution was concentratedto 5 ml at 318 K. The resulting yellow precipitatewas filtered and washed with small amounts of acetoneand resolved in 300 ml doubly distilled water at 318 K.The solution was filtered to remove turbidity. The clearsolution was then concentrated to 5 ml and refrigeratedovernight. The yellow precipitate was filtered and washedwith small amounts of cold distilled water and acetoneand dried in an oven at 318 K. The synthesis of the complexcan be summarized by Figure 1. Yield: .572 g(65%), Decomposition ranges: 520-523 K. Anal. Calcd.for C30H26N6S4Cl2Pd2: C, 40.86; H, 2.95, N, 9.53%.Found: C, 40.85; H, 2.96, N, 9.55%. Molar conductance,LambdaM (H2O, Omega-1 mol-1 cm2): 243. FT-IR (KBr pellets,cm-1): 1541 upsilon (C-N); 1022 upsilon (C-S) and 1385 (NO3- ion).UV-Vis data (water, lambdamax/nm (logepsilon): 308 (3.43), 247 (3.79) and 188 (3.95). 1H NMR (500 MHz, DMSO-d6,ppm, d = doublet, t = triplet and m = multiple): 7.66 (m,1H, H-a), 8.23 (m, 2H, H-b), 8.48 (d, 2H, H-c), 7.79(t, 2H, H-5,5), 8.30 (t, 2H, H-4,4), 8.57 (d, 2H, H-3,3),8.88 (d, 2H, H-6,6) (Figure S1).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

Reference£º
Letter; Saeidifar, Maryam; Sohrabi Jam, Zahra; Shahraki, Somayeh; Khanlarkhani, Ali; Javaheri, Masoumeh; Divsalar, Adeleh; Mansouri-Torshizi, Hassan; Akbar Saboury, Ali; Journal of Biomolecular Structure and Dynamics; vol. 35; 12; (2017); p. 2557 – 2564;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method