Introduction of a new synthetic route about 14871-92-2

14871-92-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,14871-92-2 ,(2,2¡ä-Bipyridine)dichloropalladium(II), other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to catalyst-palladium compound, name is (2,2¡ä-Bipyridine)dichloropalladium(II), and cas is 14871-92-2, its synthesis route is as follows.

To a yellow suspension containing 0.30 g (0.90 mmol) of [Pd(bpy)Cl2] in water (20 mL) wereadded a solution containing 0.06 g (0.46 mmol) of HaptHCl in water (10 mL) and an aqueoussolution of NaOH (0.3 M, 10 mL). When the mixture was stirred at 50 C for 3 h, the suspensionturned to a yellow solution. After filtration, a saturated aqueous solution of NaNO3 (10 mL) wasadded to the yellow filtrate, followed by storing in a refrigerator for 1 week. The resulting yellowcrystals of [3](NO3)2 suitable for X-ray analysis were collected by filtration. Yield: 0.19 g (55%).

14871-92-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,14871-92-2 ,(2,2¡ä-Bipyridine)dichloropalladium(II), other downstream synthetic routes, hurry up and to see

Reference£º
Article; Kouno, Masahiro; Miyashita, Yoshitaro; Yoshinari, Nobuto; Konno, Takumi; Chemistry Letters; vol. 44; 11; (2015); p. 1512 – 1514;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

New learning discoveries about 14871-92-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (2,2¡ä-Bipyridine)dichloropalladium(II), 14871-92-2

14871-92-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (2,2¡ä-Bipyridine)dichloropalladium(II), cas is 14871-92-2,the catalyst-palladium compound, it is a common compound, a new synthetic route is introduced below.

General procedure: [Pd(bpy)Cl2] (0.20 g, 0.60 mmol) was suspended in water (25 mL). Silver nitrate (0.20 g, 1.19 mmol) in water (5 mL) was added and the reaction mixture was stirred for 6 h at 60 C and then at room temperature, always in absence of light. The resulting solution was centrifuged and filtered to remove AgCl. A few drops of water, glycolic acid (0.05 g, 0.66 mmol) and 1 M NaOH (1.20 mL) were added to the filtrate. The resulting solution was stirred for 5 days and concentrated at 60 C to 5 mL on a rotary evaporator. The mixture was cooled to room temperature and the yellow powder was filtered off and dissolved from water and again concentrated to 5 mL. Yellow single crystals suitable for X-ray diffraction were obtained from the resulting solution by slow evaporation at room temperature.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (2,2¡ä-Bipyridine)dichloropalladium(II), 14871-92-2

Reference£º
Article; Balboa, Susana; Carballo, Rosa; Castineiras, Alfonso; Gonzalez-Perez, Josefa Maria; Niclos-Gutierrez, Juan; Polyhedron; vol. 50; 1; (2013); p. 512 – 523;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

The important role of (2,2¡ä-Bipyridine)dichloropalladium(II)

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (2,2¡ä-Bipyridine)dichloropalladium(II), 14871-92-2

14871-92-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (2,2¡ä-Bipyridine)dichloropalladium(II), cas is 14871-92-2,the catalyst-palladium compound, it is a common compound, a new synthetic route is introduced below.

General procedure: Silver tetrafluoroborate (AgBF4) (0.6 mmol) was dissolvedin methanol (7 mL); (2,2?-bipyridine) dichloropalladium(II)(Pd(Bpy)Cl2) (0.3 mmol) was dissolved in DMSO (1 mL),and then, the solutions were stirred together at ambient temperature0.5 h. Following gravity filtration, solid 3-hydroxyflavonederivative (0.3 mmol) and triethylamine (0.7 mL)were added to the filtrate. The reaction mixture was stirredfor 0.5 h (2 h for the Fla-OMe). The corresponding bipyridinepalladium flavonolato salt was then recovered usingvacuum filtration and recrystallized in CH3OH/CH3CN solvent;remaining solvent was removed in a vacuum desiccator overnight.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (2,2¡ä-Bipyridine)dichloropalladium(II), 14871-92-2

Reference£º
Article; Han, Xiaozhen; Whitfield, Sarah; Cotten, Jacob; Transition Metal Chemistry; (2019);,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

New learning discoveries about 14871-92-2

The chemical industry reduces the impact on the environment during synthesis,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),I believe this compound will play a more active role in future production and life.

14871-92-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (2,2¡ä-Bipyridine)dichloropalladium(II), cas is 14871-92-2,the catalyst-palladium compound, it is a common compound, a new synthetic route is introduced below.

General procedure: Silver tetrafluoroborate (AgBF4) (0.6 mmol) was dissolvedin methanol (7 mL); (2,2?-bipyridine) dichloropalladium(II)(Pd(Bpy)Cl2) (0.3 mmol) was dissolved in DMSO (1 mL),and then, the solutions were stirred together at ambient temperature0.5 h. Following gravity filtration, solid 3-hydroxyflavonederivative (0.3 mmol) and triethylamine (0.7 mL)were added to the filtrate. The reaction mixture was stirredfor 0.5 h (2 h for the Fla-OMe). The corresponding bipyridinepalladium flavonolato salt was then recovered usingvacuum filtration and recrystallized in CH3OH/CH3CN solvent;remaining solvent was removed in a vacuum desiccatorovernight.[(PdII(Bpy)(3-Hydroxy-4?-methoxyFla)][BF4] complex1 Yield: 129 mg, 70% (orange crystals) Found: C, 50.51;H, 3.01; N, 4.52; Calcd for C26H19BF4N2O4Pd:C, 50.64;H, 3.11; N, 4.54. UV-Vis lambdamax (CH3CN/nm)(epsilon/M-1 cm-1) (444 (25 200); 1H NMR (CD3CN, 400 MHz): delta 7.92 (d,J = 6.5 Hz, 2H), 7.85 (m, J = 21.9 Hz, 4H), 7.65 (t, J = 18.7,2H), 7.47 (d, J = 7.3 Hz, 2H), 7.28 (t, J = 11.4 Hz, 1 H),7.19 (d, J = 6.5 Hz, 2 H), 7.13 (t, J = 13.9 Hz, 1 H), 6.66 (d,J = 8.1 Hz, 2 H); 13C NMR (CD3CN, 400 MHz): delta = 181.44,161.13, 153.96, 153.65, 152.62, 151.82, 150.65, 148.54,148.20, 140.94, 140.67, 138.01, 133.05, 129.37, 129.14,127.34, 127.27, 125.04, 124.44, 124.03, 123.10, 123.01,121.96, 121.73, 117.45, 115.53, 54.91 ppm. ESI MS: m/z(pos.) 529.04.

The chemical industry reduces the impact on the environment during synthesis,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),I believe this compound will play a more active role in future production and life.

Reference£º
Article; Han, Xiaozhen; Whitfield, Sarah; Cotten, Jacob; Transition Metal Chemistry; (2019);,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Application of 14871-92-2

The chemical industry reduces the impact on the environment during synthesis,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),I believe this compound will play a more active role in future production and life.

14871-92-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (2,2¡ä-Bipyridine)dichloropalladium(II), cas is 14871-92-2,the catalyst-palladium compound, it is a common compound, a new synthetic route is introduced below.

10 mL ofa solution of AgNO3 (0.204 g, 1.2 mmol) was added to aqueous suspension of Pd(bipy)Cl2 (0.2 g, 0.6 mmol) acidified to pH 2-3. The formed suspension was homogenized and incubated during 1 h at 60C.

The chemical industry reduces the impact on the environment during synthesis,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),I believe this compound will play a more active role in future production and life.

Reference£º
Article; Nikandrov; Grigor’Eva; Eremin; Ruzanov; Gurzhii; Belyaev; Russian Journal of General Chemistry; vol. 85; 8; (2015); p. 1992 – 1993; Zh. Obshch. Khim.; vol. 85; 8; (2015); p. 1405 – 1406,2;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

The important role of 14871-92-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 14871-92-2, (2,2¡ä-Bipyridine)dichloropalladium(II)

14871-92-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (2,2¡ä-Bipyridine)dichloropalladium(II), cas is 14871-92-2,the catalyst-palladium compound, it is a common compound, a new synthetic route is introduced below.

[Pd(bpy)Cl2] (0.20 g, 0.60 mmol) was suspended in water (25 mL). Silver nitrate (0.20 g, 1.19 mmol) in water (5 mL) was added and the reaction mixture was stirred for 6 h at 60 C and then at room temperature, always in absence of light. The resulting solution was centrifuged and filtered to remove AgCl. A few drops of water, glycolic acid (0.05 g, 0.66 mmol) and 1 M NaOH (1.20 mL) were added to the filtrate. The resulting solution was stirred for 5 days and concentrated at 60 C to 5 mL on a rotary evaporator. The mixture was cooled to room temperature and the yellow powder was filtered off and dissolved from water and again concentrated to 5 mL. Yellow single crystals suitable for X-ray diffraction were obtained from the resulting solution by slow evaporation at room temperature. Yield: 41%, m.p.: 212 C. Elemental Anal. Calc. for C12H16N2O6Pd (390.67): C, 36.9; H, 4.1; N, 7.2. Found: C, 36.7; H, 4.0; N, 7.1%. MS (FAB+): m/z [assignment(relative intensity)]: 337(35) [M+], 262(94), 157(100). IR (KBr, numax/cm-1): 3376 m,br, 3207 m,br, nu(OH); 1626 s, nu(CC), nuasym(CO2); 1497 w, 1451 m, nu(CC,CN); 1370 m, nusim(CO2); 415 m. Far-IR (Nujol, numax/cm-1): 385 s, nu(Pd-O); 252 m, nu(Pd-N). 1H NMR (CD3OD, delta/ppm): 4.35 (s, 2H, b), 7.71 (m, 2H, 5,5?), 8.28 (m, 2H, 4,4?), 8.39 (d, 2H, 3,3?), 8.49 (d, 2H, 6,6?). 13C NMR (CD3OD, delta/ppm): 72.71 (1C, b), 124.93 (2C, 3,3?), 128.64, 129.04 (2C, 5,5?), 142.44, 142.78 (2C, 4,4?), 150.10, 151.44 (2C, 6,6?). UV-Vis (numax/cm-1): 36101, 30120, 26525 (Reflectance).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 14871-92-2, (2,2¡ä-Bipyridine)dichloropalladium(II)

Reference£º
Article; Balboa, Susana; Carballo, Rosa; Castineiras, Alfonso; Gonzalez-Perez, Josefa Maria; Niclos-Gutierrez, Juan; Polyhedron; vol. 50; 1; (2013); p. 512 – 523;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Some scientific research about (2,2¡ä-Bipyridine)dichloropalladium(II)

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

14871-92-2 A common heterocyclic compound, 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

General procedure: Silver tetrafluoroborate (AgBF4) (0.6 mmol) was dissolvedin methanol (7 mL); (2,2?-bipyridine) dichloropalladium(II)(Pd(Bpy)Cl2) (0.3 mmol) was dissolved in DMSO (1 mL),and then, the solutions were stirred together at ambient temperature0.5 h. Following gravity filtration, solid 3-hydroxyflavonederivative (0.3 mmol) and triethylamine (0.7 mL)were added to the filtrate. The reaction mixture was stirredfor 0.5 h (2 h for the Fla-OMe). The corresponding bipyridinepalladium flavonolato salt was then recovered usingvacuum filtration and recrystallized in CH3OH/CH3CN solvent;remaining solvent was removed in a vacuum desiccatorovernight.[(PdII(Bpy)(3-Hydroxy-4?-methoxyFla)][BF4] complex1 Yield: 129 mg, 70% (orange crystals) Found: C, 50.51;H, 3.01; N, 4.52; Calcd for C26H19BF4N2O4Pd:C, 50.64;H, 3.11; N, 4.54. UV-Vis lambdamax (CH3CN/nm)(epsilon/M-1 cm-1) (444 (25 200); 1H NMR (CD3CN, 400 MHz): delta 7.92 (d,J = 6.5 Hz, 2H), 7.85 (m, J = 21.9 Hz, 4H), 7.65 (t, J = 18.7,2H), 7.47 (d, J = 7.3 Hz, 2H), 7.28 (t, J = 11.4 Hz, 1 H),7.19 (d, J = 6.5 Hz, 2 H), 7.13 (t, J = 13.9 Hz, 1 H), 6.66 (d,J = 8.1 Hz, 2 H); 13C NMR (CD3CN, 400 MHz): delta = 181.44,161.13, 153.96, 153.65, 152.62, 151.82, 150.65, 148.54,148.20, 140.94, 140.67, 138.01, 133.05, 129.37, 129.14,127.34, 127.27, 125.04, 124.44, 124.03, 123.10, 123.01,121.96, 121.73, 117.45, 115.53, 54.91 ppm. ESI MS: m/z(pos.) 529.04.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

Reference£º
Article; Han, Xiaozhen; Whitfield, Sarah; Cotten, Jacob; Transition Metal Chemistry; (2019);,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

New learning discoveries about 14871-92-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (2,2¡ä-Bipyridine)dichloropalladium(II), 14871-92-2

14871-92-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (2,2¡ä-Bipyridine)dichloropalladium(II), cas is 14871-92-2,the catalyst-palladium compound, it is a common compound, a new synthetic route is introduced below.

Mefenamic acid (0.40 mmol) was dissolved in methanol (15 mL) followed by the addition of KOH (0.40 mmol). After 60 min of stirring, the resulting solution was slowly added to an aqueous solution of [PdCl2(bipy)] (0.20 mmol). After 40 min of constant stirring, the yellow solid obtained was collected by filtration, washed with ethanol and dried in a desiccator with P4O10. The yield was 63%. Anal. Calc. for [Pd(C15H14NO2)2(bipy)] (%): C 64.6; H 4.88;N 7.54. Found: C 63.3; H 4.74; N 7.62. The complex is soluble inchloroform and insoluble in water and DMSO. As already observed for the Pd-tra complex, no single crystals were obtained to perform an X ray structural characterization. The [PdCl2(bipy)] complexused as a precursor in the synthesis of Pd-mef was synthesized as described in the literature [21].

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (2,2¡ä-Bipyridine)dichloropalladium(II), 14871-92-2

Reference£º
Article; Carvalho, Marcos A.; Arruda, Eduardo G.R.; Profirio, Daniel M.; Gomes, Alexandre F.; Gozzo, Fabio C.; Formiga, Andre L.B.; Corbi, Pedro P.; Journal of Molecular Structure; vol. 1100; (2015); p. 6 – 13;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

The important role of 14871-92-2

14871-92-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,14871-92-2 ,(2,2¡ä-Bipyridine)dichloropalladium(II), other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to catalyst-palladium compound, name is (2,2¡ä-Bipyridine)dichloropalladium(II), and cas is 14871-92-2, its synthesis route is as follows.

General procedure: Solid [Pd(L)Cl2] (L = bpy, phen) (0.2 mmol) was added to methanolic solution H2mesc (0.039 g, 0.2 mmol) containing KOH (0.0224 g, 0.4 mmol;; 15 mL). The mixture was stirred for 24 h. The yellow precipitate was filtered off, washed with methanol and air-dried. For [Pd(bpy)(mesc)]: Anal. Calc. For C20H15N2O4.5Pd: C, 52.0; H, 3.3; N, 6.1; Pd, 23.1%, Found: C, 52.1, H, 3.2; N, 6.0; Pd, 23.0%. Conductivity data (10-3 M in DMSO): LambdaM = 2.0 Ohm-1 cm2 mol-1. IR (cm-1); nu(C=O) 1664; nu(C-C) 1486; nu(C-O) 1254; nu(Pd-O) 521; nu(Pd-N) 427. 1H NMR (d6-DMSO/TMS, ppm), delta: CH3, 3.36; H(3), 6.66; H(8), 5.90; H(5), 6.50. ESI-MS: m/z: 905 (Calcd 904.8) [Pd(bpy)(mesc)]2+, 453 (Calcd 452.4) [Pd(bpy)(mesc)]+.

14871-92-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,14871-92-2 ,(2,2¡ä-Bipyridine)dichloropalladium(II), other downstream synthetic routes, hurry up and to see

Reference£º
Article; Butler, Ian S.; Gilson, Denis F.R.; Jean-Claude, Bertrand J.; Mostafa, Sahar I.; Inorganica Chimica Acta; vol. 423; PB; (2014); p. 132 – 143;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Analyzing the synthesis route of (2,2¡ä-Bipyridine)dichloropalladium(II)

14871-92-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,14871-92-2 ,(2,2¡ä-Bipyridine)dichloropalladium(II), other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to catalyst-palladium compound, name is (2,2¡ä-Bipyridine)dichloropalladium(II), and cas is 14871-92-2, its synthesis route is as follows.

[(bpy)PdCl2] (0.332 g, 1 mmol) and Tl+L (0.475 g, 1 mmol) in 10 mL of dichloromethane were stirred for 18 h at room temperature. The resulting solution was filtered and evaporated to about 1 mL in volume. Then hexane (10 mL) was added to precipitate as a red-orange solid. The solid was repeatedly washed with diethyl ether (3 ¡Á 10 mL) and dried under vacuum to give the pure complex (0.297 g, 52.31% yield, and 1 mmol). Anal. Calc. (%) for C23H16ClN5O2PdS (568.9752): C, 48.61; H, 2.84; N, 12.32; Found (%): C, 48.59; H, 2.82; N, 12.29. TOF-MS: 532.0060 [M – Cl] +. FT-IR: 2152 (m, NCN) cm-1. 1H NMR (DMSO-d6): delta 7.16-7.20 (m, 2H, H-Ar), 7.49-7.51 (m, 2H, H-Ar), 7.65 (t, 1H, H-5, 3J 7.2), 7.74 (t, 1H, H-5′, 3J 7.2), 7.91-7.99 (m, 4H, H-Ar), 8.34-8.40 (m, 4H, H-Ar), 8.76 (d, 1H, H-6, 3J 7.2), 9.09 (d, 1H, H-6′, 3J 7.2). 13C NMR (DMSO-d6): delta 114.0 (NCN), 119.9, 121.9, 124.0, 125.9, 128.9, 133.1, 137.8, 143.0, 147.0, 149.0, 150.7, 157.9.

14871-92-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,14871-92-2 ,(2,2¡ä-Bipyridine)dichloropalladium(II), other downstream synthetic routes, hurry up and to see

Reference£º
Article; Tabrizi, Leila; Zouchoune, Bachir; Zaiter, Abdallah; Inorganica Chimica Acta; vol. 499; (2020);,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method