Fun Route: New Discovery of (2,2¡ä-Bipyridine)dichloropalladium(II)

According to the analysis of related databases, 14871-92-2, the application of this compound in the production field has become more and more popular.

Adding a certain compound to certain chemical reactions, such as: 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 14871-92-2,14871-92-2

To a yellow suspension containing 0.30 g (0.90 mmol) of [Pd(bpy)Cl2] in water (20 mL) wereadded a solution containing 0.06 g (0.46 mmol) of HaptHCl in water (10 mL) and an aqueoussolution of NaOH (0.3 M, 10 mL). When the mixture was stirred at 50 C for 3 h, the suspensionturned to a yellow solution. After filtration, a saturated aqueous solution of NaNO3 (10 mL) wasadded to the yellow filtrate, followed by storing in a refrigerator for 1 week. The resulting yellowcrystals of [3](NO3)2 suitable for X-ray analysis were collected by filtration. Yield: 0.19 g (55%)., 14871-92-2

According to the analysis of related databases, 14871-92-2, the application of this compound in the production field has become more and more popular.

Reference£º
Article; Kouno, Masahiro; Miyashita, Yoshitaro; Yoshinari, Nobuto; Konno, Takumi; Chemistry Letters; vol. 44; 11; (2015); p. 1512 – 1514;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

The effect of (2,2¡ä-Bipyridine)dichloropalladium(II) reaction temperature change on equilibrium

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 14871-92-2 reaction routes.

14871-92-2 A common heterocyclic compound, 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

To a yellow suspension containing 0.30 g (0.90 mmol) of [Pd(bpy)Cl2] in water (20 mL) wereadded a solution containing 0.06 g (0.46 mmol) of HaptHCl in water (10 mL) and an aqueoussolution of NaOH (0.3 M, 10 mL). When the mixture was stirred at 50 C for 3 h, the suspensionturned to a yellow solution. After filtration, a saturated aqueous solution of NaNO3 (10 mL) wasadded to the yellow filtrate, followed by storing in a refrigerator for 1 week. The resulting yellowcrystals of [3](NO3)2 suitable for X-ray analysis were collected by filtration. Yield: 0.19 g (55%).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 14871-92-2 reaction routes.

Reference£º
Article; Kouno, Masahiro; Miyashita, Yoshitaro; Yoshinari, Nobuto; Konno, Takumi; Chemistry Letters; vol. 44; 11; (2015); p. 1512 – 1514;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

The effect of the change of (2,2¡ä-Bipyridine)dichloropalladium(II) synthetic route on the product

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 14871-92-2, other downstream synthetic routes, hurry up and to see.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), it is a common compound, a new synthetic route is introduced below.14871-92-2

General procedure: Silver tetrafluoroborate (AgBF4) (0.6 mmol) was dissolvedin methanol (7 mL); (2,2?-bipyridine) dichloropalladium(II)(Pd(Bpy)Cl2) (0.3 mmol) was dissolved in DMSO (1 mL),and then, the solutions were stirred together at ambient temperature0.5 h. Following gravity filtration, solid 3-hydroxyflavonederivative (0.3 mmol) and triethylamine (0.7 mL)were added to the filtrate. The reaction mixture was stirredfor 0.5 h (2 h for the Fla-OMe). The corresponding bipyridinepalladium flavonolato salt was then recovered usingvacuum filtration and recrystallized in CH3OH/CH3CN solvent;remaining solvent was removed in a vacuum desiccator overnight.

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 14871-92-2, other downstream synthetic routes, hurry up and to see.

Reference£º
Article; Han, Xiaozhen; Whitfield, Sarah; Cotten, Jacob; Transition Metal Chemistry; (2019);,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Fun Route: New Discovery of (2,2¡ä-Bipyridine)dichloropalladium(II)

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 14871-92-2.

14871-92-2,Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. (2,2¡ä-Bipyridine)dichloropalladium(II),14871-92-2, This compound has unique chemical properties. The synthetic route is as follows.

First, 63.6 mg (0.2 mmol)Of compounds 111-5 and 32.2 mmol (0.6 mmol)Of methanol was added to a mixture of 30 ml of anhydrous methanol and tetrahydrofuran(Volume ratio of 1: 1)Argon protection,After stirring at room temperature for 1.5 h,Followed by the addition of 66.4 mg (0.2 mmol) of cis-dichloro-1,1′-bipyridyl palladium (II)Continue to argon protection,Stirring at 25 C for 14 h,After the reaction,The resulting solid was purified by column chromatography,Get the target product,Weight 93.8 mg, yield: 85%.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 14871-92-2.

Reference£º
Patent; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Wang, Zhiyuan; Liu, Bo; Qiao, Wenqiang; (34 pag.)CN103483391; (2016); B;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

The effect of the change of 14871-92-2 synthetic route on the product

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2,2¡ä-Bipyridine)dichloropalladium(II).

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.14871-92-2

14871-92-2, General procedure: To a vigorously stirred solution of BzpheH2 (32.32 mg, 0.12 mmol) in 8 mL CH3OH/H2O (V:V 1:1), [Pd(bipy)Cl2] (20 mg, 0.06 mmol) was added. The mixture was heated to 50C and adjusted to pH 8-9 by NaOH solution, and then stirred for 2 h. The solution was concentrated to about 80% of the original volume. The complex I-a was separated from the solution after a few days.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2,2¡ä-Bipyridine)dichloropalladium(II).

Reference£º
Article; Wang, Li-Wei; Liu, Si-Yuan; Wang, Jin-Jie; Peng, Wen; Li, Sheng-Hui; Zhou, Guo-Qiang; Qin, Xin-Ying; Wang, Shu-Xiang; Zhang, Jin-Chao; Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry; vol. 45; 7; (2015); p. 1049 – 1056;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Flexible application of 14871-92-2 in synthetic route

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2,2¡ä-Bipyridine)dichloropalladium(II).

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.14871-92-2

First, 63.6 mg (0.2 mmol)Of compounds 111-5 and 32.2 mmol (0.6 mmol)Of methanol was added to a mixture of 30 ml of anhydrous methanol and tetrahydrofuran(Volume ratio of 1: 1)Argon protection,After stirring at room temperature for 1.5 h,Followed by the addition of 66.4 mg (0.2 mmol) of cis-dichloro-1,1′-bipyridyl palladium (II)Continue to argon protection,Stirring at 25 C for 14 h,After the reaction,The resulting solid was purified by column chromatography,Get the target product,Weight 93.8 mg, yield: 85%., 14871-92-2

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2,2¡ä-Bipyridine)dichloropalladium(II).

Reference£º
Patent; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Wang, Zhiyuan; Liu, Bo; Qiao, Wenqiang; (34 pag.)CN103483391; (2016); B;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Derivation of elementary reaction about 14871-92-2

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 14871-92-2, other downstream synthetic routes, hurry up and to see.

14871-92-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), it is a common compound, a new synthetic route is introduced below.

General procedure: Palladium(II) chloride (PdCl2), 2,2?-bipyridine (bipy), 1,10-phenanthroline (phen), thiourea (TU, 1), N-methylthiourea (meTU, 2), N-buthylthiourea (buTU, 3), N,N?-diethylthiourea (dietTU, 4) and N,N?-dibuthylthiourea (dibuTU, 5) were purchased as pure reagents at AG, from Sigma Aldrich. Potassium tetrachloropalladate(II) was prepared by the reaction of palladium chloride with a slight excess of potassium chloride. The complexes [Pd(bipy)Cl2] and [Pd(phen)Cl2], were obtained by adding 1 mmol of the respective ligand to 0.326 g (1 mmol) of K2[PdCl4] suspended/dissolved in 40 mL of wet methanol under reflux for about 1 h. The precipitated crystalline powders were recovered by filtration and dried under vacuum for 2 h. 0.25 mmol of these complexes (83 and 89 mg, respectively) were then suspended again in a water/methanol mixture, whereupon 0.5 mmol of the respective thiourea (1-5) was added under reflux. After 1 h, clear yellow to orange solutions were obtained. These solutions were filtrated and the filtrates were kept for 3-5 days at room temperature for crystallization. As a result yellow-red crystals were obtained. The experimental yield of the products, based on Pd, was more than 50%. All the solvents, of analytical grade, were dried and deoxygenated before being used. Elemental analyses were performed at the Microanalytical Laboratory of Redox snc (Milano). Characterization details are extensively quoted in the supplementary material.

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 14871-92-2, other downstream synthetic routes, hurry up and to see.

Reference£º
Article; Rotondo, Archimede; Barresi, Salvatore; Cusumano, Matteo; Rotondo, Enrico; Polyhedron; vol. 45; 1; (2012); p. 23 – 29;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

The effect of the change of 14871-92-2 synthetic route on the product

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2,2¡ä-Bipyridine)dichloropalladium(II).

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.14871-92-2

General procedure: To a vigorously stirred solution of BzpheH2 (32.32 mg, 0.12 mmol) in 8 mL CH3OH/H2O (V:V 1:1), [Pd(bipy)Cl2] (20 mg, 0.06 mmol) was added. The mixture was heated to 50C and adjusted to pH 8-9 by NaOH solution, and then stirred for 2 h. The solution was concentrated to about 80% of the original volume. The complex I-a was separated from the solution after a few days.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2,2¡ä-Bipyridine)dichloropalladium(II).

Reference£º
Article; Wang, Li-Wei; Liu, Si-Yuan; Wang, Jin-Jie; Peng, Wen; Li, Sheng-Hui; Zhou, Guo-Qiang; Qin, Xin-Ying; Wang, Shu-Xiang; Zhang, Jin-Chao; Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry; vol. 45; 7; (2015); p. 1049 – 1056;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Fun Route: New Discovery of (2,2¡ä-Bipyridine)dichloropalladium(II)

The chemical industry reduces the impact on the environment during synthesis, 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),I believe this compound will play a more active role in future production and life.

14871-92-2,A common heterocyclic compound, 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

To a yellow suspension containing 0.10 g (0.31 mmol) of [Pd(bpy)Cl2] in water (10 mL) wereadded a solution containing 0.04 g (0.32 mmol) of HaptHCl in water (10 mL) and an aqueoussolution of NaOH (0.25 M, 2.5 mL). When the mixture was stirred at 50 C for 3 h, the suspensionturned to a yellow solution. After filtration, a saturated aqueous solution of NaNO3 (5 mL) wasadded to the yellow filtrate. The mixture was stood at room temperature for 2 d, and the resultingyellow crystals of [2](NO3)2 was collected by filtration. Yield: 0.03 g (36%).

The chemical industry reduces the impact on the environment during synthesis, 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),I believe this compound will play a more active role in future production and life.

Reference£º
Article; Kouno, Masahiro; Miyashita, Yoshitaro; Yoshinari, Nobuto; Konno, Takumi; Chemistry Letters; vol. 44; 11; (2015); p. 1512 – 1514;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Fun Route: New Discovery of (2,2¡ä-Bipyridine)dichloropalladium(II)

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2,2¡ä-Bipyridine)dichloropalladium(II).

14871-92-2,Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials.14871-92-2,A new synthetic method of this compound is introduced below.

A suspension of 1 mmol (0.333 g) of [Pd(bpy)Cl2] in 150 mL ofacetone was treated with 1 mmol (0.228 g) of benzyl dithiocarbamatesodium salt and the mixture was refluxed under continuousmagnetic stirring for 2 h. Stirring continued for another 12 h at 318 K and then filtered.The resulting yellow colored filtrate containing the desired productwas concentrated to 15 mL at 318 K. The orange precipitate formedwas filtered off and washed with diethyl ether. Recrystallizationwas done by dissolving the precipitate in minimum amount ofethanol. Yield: 0.336 g (70%) and decomposes at 207-209 C. Anal.Calcd. for C18H16N3S2ClPd (480.34 g mol-1) Found, (Calcd.) (%): C45.01, (45.05); H, 3.36 (3.34); N, 8.75 (8.76). Molar conductance forthe complex (10-3 M, H2O) is 9.0 mS m2 mol-1. FT-IR (KBr, cm-1):3405 upsilon(N-H); 3020 upsilon(Caro-H); 1550 upsilon(C-N); 1313 upsilons (CNS); 1036 upsilonas(CNS); 503 upsilon (Pd-N); 450 upsilon (Pd-S). 1H NMR (DMSO-d6-D2O, delta ppm):4.71 (d, 2H, H-c), 7.40 (m,1H, H-a), 7.32 (m, 4H, H-b), 8.54 (m, 2H, H-6,60), 8.27 (m, 2H, H-3,30), 8.18 (m, 2H, H-4,40), 7.68 (M, 2H, H-5,50)(Fig. 1). 13C NMR (DMSO-d6, delta ppm): 48.00 (C-e), 139.67 (C-5,5′),139.84 (C-4,4′), 140.00 (C-a), 140.17 (C-b), 140.34 (C-c), 140.50 (C-3,30), 140.60 (C-d), 140.67 (C-1,10), 140.76 (C-f) (Fig. 1). The NMRnumbering schemes are given in Fig. 1. UV-Vis data (H2O, lambdamax/nm,(log epsilon)): 312 (3.40), 249 (3.75), 187 (3.94).

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2,2¡ä-Bipyridine)dichloropalladium(II).

Reference£º
Article; Saeidifar, Maryam; Mirzaei, Hamidreza; Ahmadi Nasab, Navid; Mansouri-Torshizi, Hassan; Journal of Molecular Structure; vol. 1148; (2017); p. 339 – 346;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method