Chemistry is an experimental science, and the best way to enjoy it and learn about it is performing experiments. HPLC of Formula: C51H42O3Pd2. Introducing a new discovery about 52409-22-0, Name is Pd2(DBA)3
We review the Stille coupling synthesis of P(DPP2OD-T) (Poly[[2,5-di(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-3,6-diyl]-alt-[2,2?:5?,2?-terthiophene-5,5?-diyl]]) and show that high-quality, high molecular weight polymer chains are already obtained after as little as 15 min of reaction time. The results of UV-vis spectroscopy, grazing incidence wide-angle X-ray scattering (GIWAXS), and atomic force microscopy show that longer reaction times are unnecessary and do not produce any improvement in film quality. We achieve the best charge transport properties with polymer batches obtained from short reaction times and demonstrate that the catalyst washing step is responsible for the introduction of charge-trapping sites for both holes and electrons. These trap sites decrease the charge injection efficiency, strongly reducing the measured currents. The careful tuning of the synthesis allows us to reduce the reaction time by more than 100 times, achieving a more environmentally friendly, less costly process that leads to high and balanced hole and electron transport, the latter being the best reported for an isotropic, spin-coated DPP polymer.
Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.HPLC of Formula: C51H42O3Pd2, you can also check out more blogs about52409-22-0
Reference:
Chapter 1 An introduction to palladium catalysis,
Palladium/carbon catalyst regeneration and mechanical application method